Как позвонить соленоидную катушку мультиметром

Автомобили admin26.02.2020

Клапан с электромагнитным приводом — это современный вид запорной арматуры. Они позволяют на расстоянии управлять потоками жидкости или газа в трубопроводных системах. Такие затворы хорошо встраиваются в автоматизированные системы управления технологическими процессами, позволяют экономить дефицитные человеческие ресурсы и делают работу предприятий более безопасной. Существует большое количество различных видов клапанов для разных сред, различаются они и по своему устройству и назначению.

цифровая электроника вычислительная техника встраиваемые системы

Как определить неисправный соленоид

Соленоиды – это электрические компоненты с широким спектром применения. Они встречаются во всем, от электронных дверных замков до диализных аппаратов. Они состоят из тонких спиральных проводов, которые создают магнитные поля при воздействии на них тока. Обычно используемые для переключения состояния переключателей или клапанов (и их часто путают с электромагнитами, которые функционируют аналогичным образом), соленоиды чаще всего называют ключевыми компонентами пускателей двигателей транспортных средств.

Несмотря на то, что они используются во многих сложных машинах, сами соленоиды являются простыми компонентами, и диагностику неисправного соленоида можно выполнить дома с помощью подходящих инструментов.

Соленоиды легко спутать с электромагнитами, по понятной причине: два электрических компонента функционируют, основываясь на одной и той же предпосылке – что сильно скрученный провод будет генерировать магнитное поле при приложении к нему тока. Основное различие заключается в том, присутствует ли магнитный сердечник. Если спиральный провод обернут вокруг мягкого железного или аналогичного металлического сердечника, компонент является электромагнитом, и сила его магнитного поля может быть увеличена или уменьшена в зависимости от количества приложенного к нему электричества. Если этого сердечника нет, компонент является соленоидом. Поскольку соленоиды могут находиться только в двух состояниях (включен или выключен), они обычно используются в качестве простых переключателей в электронных системах.

Независимо от системы, в которой используется ваш соленоид, первые шаги по проверке потенциально неисправного соленоида включают обеспечение надлежащего функционирования соединений с остальной частью системы и батареей системы. Проверьте все провода, клеммы или другие соединения с соленоидом, а также монтаж самого соленоида, чтобы убедиться, что все подключено надежно и ни одна из клемм не подвержена коррозии. Затем проверьте, достаточно ли заряда батареи системы, и работает ли система в горячем состоянии: если батарея разряжена или температура системы слишком высокая, соленоид может не работать должным образом.

Если соленоид проходит первый набор проверок, следующие шаги будут зависеть от того, используется ли ваш соленоид как часть двигателя автомобиля. Если это не так, ваш соленоид можно легко проверить с помощью электрического мультиметра: настройте мультиметр для проверки целостности, подключите соленоид к его источнику питания, а затем проверьте положительные и отрицательные клеммы соленоида – если ваш мультиметр не подает звуковой сигнал, ток не проходит через весь соленоид, и устройство следует заменить. Если ваш мультиметр издает звуковой сигнал, но соленоид по-прежнему не работает, переключите измеритель на тестирование сопротивления и проверьте обе силовые клеммы соленоида: если показание выше 0,3 Ом, внутренняя часть соленоида ухудшилась и не проводит достаточно электричества, чтобы функционировать должным образом, тогда устройство должно быть заменено.

Если ваш соленоид используется как часть автомобиля, его все же можно проверить с помощью мультиметра, но тест на непрерывность можно выполнить без него. Найдите соленоид (обычно находящийся рядом или как часть, встроенная в стартер), а затем вставьте и поверните ключ автомобиля. Если батарея и соединения были проверены, и вы услышали щелчок стартера, но двигатель не включился, следует заменить блок соленоида стартера. Имейте в виду, что, хотя возможно, что соленоид подает достаточную мощность, столь же вероятно, что механические системы стартера со временем деградируют или ослабевают до такой степени, что функционирование соленоида легко игнорируется.

Источник

Неисправности катушек индуктивности и способы их проверки.

В катушках индуктивности могут быть повреждения механического и электрического характера.

К неисправностям механического характера относятся:

  • — поломки каркаса, экранов и крепежной арматуры;
  • — нарушение покрытий;
  • — повреждения резьбы регулировочных винтов, подшипников;
  • — заедания ролика в вариометрах.

К неисправностям электрического характера относятся:

  • — обрывы проводов обмоток;
  • — короткое замыкание части или всех витков обмотки;
  • — замыкания обмотки или лепестков на арматуру, экран или корпус аппаратуры;
  • — изменение индуктивности и ухудшение добротности.

Проверка исправности катушек индуктивности начинается с

внешнего осмотра. В ходе его убеждаются в исправности каркаса, экрана, выводов; в правильности и надежности соединений всех деталей катушки между собой; в отсутствии видимых обрывов проводов, замыканий, повреждения изоляции и покрытий. Особое внимание следует обращать на места обугливания изоляции, каркаса, почернение или оплавление заливки.

В вариометрах необходимо проверить работу подвижной системы, плавность хода ротора или ролика, исправность токосъемников. Витки катушек и межвитковое пространство следует — очистать от грязи и пыли протиранием шерстяной тканью и промывкой растворителем.

Электрическая проверка катушек индуктивности включает проверку на обрыв, определение наличия короткозамкнутых витков и состояния изоляции обмотки.

Проверка на обрыв выполняется пробником. Увеличение сопротивления означает обрыв или плохой контакт одной или нескольких жил. Уменьшение сопротивления означает наличие меж- виткового замыкания. При коротком замыкании выводов сопротивление равно нулю. Для получения точного представления о неисправности катушки необходимо измерить индуктивность. В вариометрах следует’ измерять индуктивность не менее чем в трех положениях ротора или ролика — двух крайних и среднем. В заключение рекомендуется проверить работоспособность кагушки в заведомо исправном гаком же аппарате, для которого она предназначена.

Трансформаторы и дроссели низкой частоты в отличие от катушек индуктивности имеют сердечники из стали или из ферромагнитных материалов, что значительно увеличивает индуктивность. По конструкции и технологии изготовления трансформаторы и дроссели имеют много общего. И те, и другие состоят из обмоток, выполненных изолированным проводом, и сердечника. Магнитопроводы трансформаторов и дросселей, в зависимости от назначения и условий работы, изготовляются в виде сердечников броневого, стержневого и тороидального типов.

По способу изготовления они делятся на штампованные наборные сердечники, ленточные из трансформаторной стали специальных сплавов и прессованные из оксидных ферромагнетиков (ферритов).

Основными характеристиками трансформаторов и дросселей низкой частоты являются:

  • 1. Величина индуктивности.
  • 2. Рабочее напряжение.
  • 3. Испытательное напряжение.
  • 4. Сопротивление изоляции.
  • 5. Мощность трансформатора и дросселя.

Неисправности трансформаторов и дросселей низкой частоты и способы их проверки

К электрическим повреждениям относятся:

  • — обрывы обмоток; замыкания между витками обмоток;
  • — короткое замыкание обмотки на корпус, сердечник, экран или арматуру;
  • — пробой между обмотками, на корпус или между витками одной обмотки;
  • — уменьшение сопротивления изоляции;
  • — местные перегревы.

Причинами неисправностей являются нарушения правил эксплуатации и условий хранения деталей, а также небрежное их изготовление. Проверка исправности трансформаторов и дросселей низкой частоты должна начинаться с внешнего осмотра. В ходе его выявляются и устраняются все видимые механические неисправности.

Проверка на короткое замыкание между обмотками, между обмотками и корпусом производится оммегром. Прибор включают между выводами разных обмоток, а также между одним из выводов и корпусом. Так же проверяется и сопротивление изоляции, которое должно быть не менее 100 МОм для герметизированных трансформаторов и не менее десятков МОм для негерметизиро- ванных. Самым сложным является проверка на междувитковые замыкания. Известны несколько способов проверки:

  • 1. Измерение омического сопротивления обмотки и сравнение результатов с паспортными данными. (Способ простой, но не точный, особенно при малой величине омического сопротивления обмоток и малом числе короткозамкнутых витков.)
  • 2. Проверка катушки с помощью специального прибора — анализатора короткозамкнутых витков.
  • 3. Проверка коэффициентов трансформации на холостом ходу. Коэффициент трансформации определяется как отношение напряжений, показываемых вольтметрами У2 и VI. При наличии меж- витковых замыканий коэффициент трансформации будет меньше нормы.
  • 4. Измерение индуктивности обмотки.
  • 5. Измерение потребляемой мощности на холостом ходу. У силовых трансформаторов одним из признаков наличия короткозамкнутых витков является чрезмерный нагрев обмотки.

Как проверить катушку электромагнитного клапана

Клапан с электромагнитным приводом — это современный вид запорной арматуры. Они позволяют на расстоянии управлять потоками жидкости или газа в трубопроводных системах. Такие затворы хорошо встраиваются в автоматизированные системы управления технологическими процессами, позволяют экономить дефицитные человеческие ресурсы и делают работу предприятий более безопасной. Существует большое количество различных видов клапанов для разных сред, различаются они и по своему устройству и назначению.

Где находятся

Как проверить эбу на работоспособность без машины
Соленоиды располагаются в клапанной плите гидроблока. Устройство устанавливается в посадочное место, и фиксируется прижимной пружиной или болтом. С внешней части к штекеру катушки подсоединяется шлейф электропроводки, идущей от ЭБУ.

Гидроблок, в зависимости от конструкции коробки, может находиться снизу автомобиля или сбоку около колеса. Чтобы добраться до соленоидов, нужно снять масляный поддон. Определить где какой клапан гидроблока находится, можно по цвету проводки, например, в АКПП JF405E Дэу Матиз EPS подключен коричневым проводом, а электроклапан блокировки — синим.

Что это такое?

Для начала рассмотрим, что собой представляют соленоиды. Это электромагнитные клапаны-регуляторы, что выполняют функцию открытия и закрытия масляного канала. Работа соленоидов контролируется электронным блоком управления. Благодаря данному клапану, осуществляется контроль давления АТФ-жидкости на конкретные связки сцепления. Соленоид позволяет быстро переключать передачи или снимать блокировку гидротрансформатора АКПП.

Где находится данный клапан? Он располагается в гидравлической плите. Элемент вставлен в канал, где скрепляется посредством специальной прижимной пластины или же с помощью болта. Другим концом он присоединяется с помощью штекера или шлейфа электропроводки к ЭБУ. Количество соленоидов может быть разным. На современных коробках их численность может быть от четырех до семи в среднем.

Коротко о функциях

Соленоиды автоматических коробок передач представляют собой стержень из металла, который обвивается спиралью из токопроводящего материала. В спирали действует ток, в результате чего под действием электромагнитных сил стержень начинает двигаться, тем самым создавая пространства для движения масла. В изначальное положение стержень возвращается под действием пружины. Это самая простая конструкция, которую уже много раз дополняли различные фирмы и автоконцерны. Соленоиды АКПП, как и было указано, обеспечивают ток масла или его прерывание. За счет контроля давления масла в трансмиссионной системе можно регулировать его подачу на фрикционы, эффективно переключать передачи, а также включать и отключать блокировку гидротрансформатора. Соленоиды работают в тандеме с электронным блоком управления. Блок подключен к электромагнитным клапанам посредством специальных шлейфов, способных передавать управляющий сигнал.

Ресурс

Каждый механизм имеет свой срок службы. Электромагнитные клапаны рассчитаны на определенное число циклов открывания и закрывания. Данный параметр составляет порядка 300-400 тысяч. Нужно сказать, что ресурс не всегда зависит от пробега авто. На некоторых режимах работы соленоиды включаются чаще, а на некоторых – реже. Но в среднем, ресурс клапанов не превышает 400 тысяч километров. Также данный параметр зависит от качества используемого масла (наличие грязи существенно влияет на ресурс). Поломки могут возникать и по причине механических повреждений. Это трещины в корпусе, обрыв электрической обмотки, либо недостаточная упругость пружины. Все это влечет за собой нестабильную работу автоматической трансмиссии.

Снижение энергопотребления соленоида

Одним из основных недостатков соленоидов, особенно линейного соленоида, является то, что они являются «индуктивными устройствами», изготовленными из катушек с проволокой. Это означает, что соленоидная катушка преобразует часть электрической энергии, используемой для их работы, в «нагрев» из-за сопротивления провода. Другими словами, при длительном подключении к источнику электропитания они нагреваются, и чем дольше время, в течение которого питание подается на соленоидную катушку, тем горячее становится. Также, когда катушка нагревается, ее электрическое сопротивление также изменяется, позволяя течь большему току, повышая ее температуру.

При постоянном входном напряжении, подаваемом на катушку, катушка соленоидов не имеет возможности остыть, потому что входная мощность всегда включена. Чтобы уменьшить этот самогенерируемый эффект нагрева, необходимо уменьшить либо количество времени, в течение которого катушка находится под напряжением, либо уменьшить количество тока, протекающего через нее. Один из способов потребления меньшего тока заключается в подаче подходящего достаточно высокого напряжения на электромагнитную катушку, чтобы обеспечить необходимое электромагнитное поле для работы и посадки плунжера, но затем один раз активировать для снижения напряжения питания катушек до уровня, достаточного для поддержания плунжера, в «сидячем» или закрытом положении.

Используя этот метод, соленоид может быть подключен к его источнику напряжения на неопределенный срок (непрерывный рабочий цикл), так как мощность, потребляемая катушкой, и выделяемое тепло значительно уменьшаются, что может быть до 85-90% при использовании подходящего силового резистора. Однако мощность, потребляемая резистором, также будет генерировать определенное количество тепла, I 2 R (закон Ома), и это также необходимо учитывать.

Разбор обратного клапана

Разбор обратного клапана производится в следующей последовательности:

Для начала необходимо отвернуть гайки, снять фланцы и шайбы. Затем снять запорный орган, отвернуть крышку и снять оболочку, сжать по диаметру патрубок и вытащить его, снять оболочку с фланцев.

Сбор обратного клапана происходит, соответственно, в обратном порядке: на запорный орган надевается оболочка и закручивается крышкой, сжимается патрубок и вставляется в корпус, затем в корпус устанавливается запорный орган, одевается оболочка на фланцы, и они вставляются, также, в корпус, после вворачиваются шпильки, на шпильки устанавливается клапан и закручиваются гайки и шайбы.

Разборка обратного клапана, установленного в водонагревателе

У многих в домах и на дачах имеются водонагреватели, давайте также уделим внимание демонтажу обратного клапана из бойлера. Для начала необходимо обесточить электроприбор. После откручивания гайки повернуть трубопровод холодной воды, отвинтить гайку с вентильного блока, снять гильзу, пружину и сам клапан, почистить посадочное место в вентиле, в случае необходимости заменить клапан.

Если обратный клапан не может сдержать поток рабочей среды, то лучшим вариантом будет вызвать специалиста, который гарантированно устранит неисправность. Если же случился обычный засор, то можно справиться самостоятельно: прочистить клапан моющими средствами и поставить обратно. Что важно, всегда необходимо соблюдать технику безопасности.

Соленоиды косвенного действия

Данный вид соленоида является более сложным, и понадобится больше времени для объяснения механизма его работы. Проще говоря, соленоид косвенного действия состоит из двух клапанов, соединённых в один механизм. Основной клапан (main valve) – это золотник, который работает по описанному выше принципу, второй используемый механизм – это управляющий клапан (pilot valve), который находится между золотником и электромагнитом. Управляющий клапан представляет собой маленький соленоид прямого действия, который активирует нажатие большого золотника. Обратите внимание, что соленоид, показанный на данном изображении, является соленоидом прямого действия, так как он напрямую воздействует на управляющий клапан, но вся конструкция в сборе является соленоидом косвенного действия.

Основное различие между соленоидами прямого действия и косвенного действия в том, как они взаимодействуют с механическими частями маркера. Соленоиды прямого действия работают напрямую с элементами механизма маркера. Соленоиды косвенного действия используют воздушный поток для управления золотником. Основная причина существования соленоидов косвенного действия – это их невероятно низкое потребление энергии по сравнению с соленоидами прямого действия. Например, если соленоиду прямого действия необходимо 4 ватта для воздействия на механизм, то соленоиду косвенного действия для того же воздействия нужно всего 0,5 ватта.

Далее соленоиды делятся по количеству потоков. Для функционирования у соленоида должно быть хотя бы одно отверстие, через которое воздух поступает в соленоид, одно отверстие, из которого воздух поступает в механизм, и одно отверстие для сброса воздуха. Но в большинстве случаев используется конструкция с двумя отверстиями для подачи воздуха в механизм маркера и двумя отверстиями сброса воздуха. В настоящее время, в основном, используются три основных типа соленоидов:

  1. Четырёхпоточный золотниковый клапан (four way spool valve). Этот тип используется в большинстве полностью электропневматических маркеров, где для движения поршня назад и вперёд используется воздух. Например Ego, Angel, Shocker, Dye Matrix и т.п. Неправильно названный тривей (three way valve) на кокерах, тоже является примером четырёхпоточного поршня.
  2. Трехпоточный золотник, закрытый в состоянии покоя (3-way spool normally closed). Это трехпоточный клапан, который подаёт воздух при подаче на него напряжения. Когда этот соленоид в состоянии покоя, он не подаёт никакого давления, например pVI Shocker, Invert Mini.
  3. Трёхпоточный золотник, открытый в состоянии покоя (3-way spool normally open). Это трёхпоточный клапан, который подаёт давление в состоянии покоя, и перекрывает поток воздуха, когда на него подаётся напряжение, например Ion.

Управляющий клапан в соленоиде всегда является трёхпоточным, закрытым в состоянии покоя. Когда на соленоид подаётся напряжение, управляющий клапан открывается и подаёт воздух для того, чтобы сдвинуть золотник, который, в свою очередь, может быть и трехпоточным и четырёхпоточным.

Каждый соленоид косвенного действия делится на три сегмента: катушка (coil), управляющий клапан (pilot) и золотник (spool). Катушка – это единственная электромагнитная часть всего механизма. Состоит она из медной проволоки, обмотанной вокруг металлического кожуха, внутри которого находится металлический стержень, являющийся противоположным магнитным компонентом клапана. Стержень изготавливается из стали и имеет пружину с одного конца. На противоположном конце соленоида находится золотник, который является клапаном и основной движущейся частью соленоида. Золотники обычно изготавливаются из латуни или алюминия в зависимости от производителя.

Будет интересно➡ Что такое подстроечный резистор: описание устройства и область его применения

Также на золотнике имеются разнообразные прокладки для того, чтобы перенаправлять воздушные потоки. И, наконец, последняя часть соленоида – управляющий клапан, который является “посредником” между движением стержня катушки и золотника. Основной компонент для управляющего клапана – круглый поршень, который передвигает золотник в открытое положение. Поршень представляет собой маленький пластиковый диск с прокладкой вокруг него. За поршнем находится маленький привод, деталь для удержания привода на месте и маленькая заглушка, находящаяся внутри привода. Большинство этих компонентов, как и корпус управляющего клапана, изготавливается из полимеров для того, чтобы улучшить скольжение и уплотнение.

Интересный материал для ознакомления: что такое вариасторы.

В заключение статьи, что же такое двелл? Это время, в течение которого на соленоид подаётся напряжение (соответственно, путь болта маркера в переднее положение + время, которое болт находится в переднем положении, выпуская воздух). При сильном понижении параметра двелл вам придётся компенсировать более короткое время пребывания болта в переднем положении путём повышения рабочего давления маркера, что не будет полезным для вашего маркера. Слишком завышенное значение параметра двелл приведёт к перерасходу воздуха, заряда батареи и большему износу самого соленоида.

Диагностика

Итак, как проверить сопротивление соленоида АКПП на автомобиле? Для этого нам нужно осуществить «прозвонку». Стоит знать, что со временем из-за агрессивных условий работы металл стареет и сопротивление обмотки электромагнитного клапана увеличивается. Именно эту характеристику нам следует определить. Для того чтобы проверить соленоид АКПП автомобиля, нам понадобится мультиметр. Его переводим в режим омметра.

Дальше нужно добраться до самих соленоидов. Как это сделать? Необходимо снять гидравлический блок с автоматической коробки. Он находится на днище трансмиссии (в некоторых случаях – сбоку). Дальше отсоединяем контакты каждого электромагнитного клапана от соответствующих разъемов, что идут на ЭБУ.

Чтобы проверить соленоиды в АКПП мультиметром, на следующем этапе подключаемся щупами тестера к соленоиду. Все клапаны измеряются по отдельности. Норма для каждого разная. Так, для клапана EV-1 нормальное сопротивление составляет от 65 до 66 Ом. Важный момент: замеры должны производиться при температуре +20 градусов Цельсия. При другой температуре данные могут быть неточными.

Для электромагнитного клапана EV-2 норма составляет от 55 до 65 Ом. Для клапана EV-3 норма такая же. Соленоид EV-4 является рабочим, если после замеров мы получили результат от 4,5 до 5,1 Ом. Что касается пятого клапана, его сопротивление должно быть таким же, как и у второго. Для шестого (если такой имеется в коробке) норма — от 4,5 до 5 Ом. Соленоид EV-7 считается рабочим, если его сопротивление составляет от 55 до 65 Ом. Нелишней будет и проверка датчика температуры АТФ-жидкости.

Конструкция соленоида АКПП

Примерно с 80-х годов прошлого века соленоиды начали активно использоваться в АКПП. Тогдашняя конструкция, сегодня называемая On-Off, отличалась простотой и дешевизной. Вместе с тем, старые соленоиды страдали от обрывов цепи в обмотке и от коротких замыканий. Кроме того, ослабление пружины означало, что масляный канал или не будет закрываться вовремя, или вообще перестанет закрываться полностью. Дальнейшая эволюция соленоидов выглядит следующим образом:

  1. Соленоиды Volvo. Конструкция была дополнена толкающим сердечником, фильтром-сеткой в канале и специальным шариковым металлическим клапаном. Канал для масла имел сразу два выхода. По сути, это гидравлический клапан и электрика в одном корпусе. Электроклапан имеет два положения: нормально открытое и нормально закрытое. При обесточивании клапан закрывается пружина. По ходу эксплуатации стало ясно, что такая конструкция оказалась довольно сложной и устройство слишком часто выходит из строя;
  2. Трехканальные соленоиды (3-way). Особенность таких соленоидов в том, что они соединяют 3 канала. В первом положении шарик дает маслу ход из первого канала во второй, а во втором положении открывается проход уже из второго канала в третий. До появление такого соленоида давления сбрасывалось из пакета сцепления специальным механическим клапаном, однако 3-way соленоиды, находясь во втором положении, могли взять на себя эту задачу.
  3. Соленоиды типов PMW (широтно-импульсной модуляции), VBS (переменного пропуска), VFS (переменной силы). Это полноценные соленоиды-регуляторы, работающие по принципу «вентиля», а не «крана». PMW-соленоиды активно применяются для управления вторичным золотником. Более сложные VBS показали себя весьма неплохо: они чувствительны даже к небольшим колебаниям подаваемого давления и эффективно управляют потоком низкого давления. Наиболее сложные VFS-соленоиды могут работать и с высоким, и с низким давлением, однако к изменениям подаваемого давления они не чувствительны.

Отдельно стоит отметить линейные соленоиды. Часто их называют пропорциональными. Крупнейшим их проектировщиком и изготовителем является японская фирма Aisin Co. Конструкция соленоидов предусматривает наличие подвижного золотника-плунжера с отверстиями. Такие соленоиды позволяют эксплуатировать гидроплиту в щадящем режиме, так как ее самый изнашиваемый участок был вынесен непосредственно в клапан.

Электромагнитный клапан газовой колонки не срабатывает.

Есть решение, когда не открывается электромагнитный клапан. Видимо слабый ток на катушке, да ещё давление газа «придерживает» клапан в закрытом состоянии, так что клапану надо помочь (если на снятом клапане шток ходит свободно, то должно сработать). На заднюю стенку клапана нужно приложить не очень сильный магнит, так чтобы он не открывал клапан сам по себе (в моём случае – это был магнит от штор). Шток клапана будет находиться в подмагниченном состоянии, и для его сдвига нужно будет минимум усилий, даже со сдохшими батареями работает. Можно поэкспериментировать с мощностью магнита.

Клапан электромагнитный газовый с фильтром очищает жидкую фазу газа от взвесей и смолистых отложений (фильтр грубой очистки) и перекрывает подачу газа при работе двигателя на бензине и при выключении зажигания.

Газовый клапан гбо, используется для подачи газового топлива и для ее прекращения. Кроме того, он очищает газовую смесь от всевозможных примесей. Газовый электромагнитный клапан гбо применяется для всех автомобилей при установке газобаллонного оборудования.

Электромагнитное переключение

Обычно соленоиды, линейные или вращающиеся, работают с приложением постоянного напряжения, но их также можно использовать с синусоидальными напряжениями переменного тока, используя двухполупериодные мостовые выпрямители для выпрямления питания, которые затем можно использовать для переключения соленоида постоянного тока. Малые соленоиды типа DC могут легко управляться с помощью транзисторных или полевых МОП-транзисторов и идеально подходят для использования в роботизированных устройствах.

Однако, как мы видели ранее с электромеханическими реле, линейные соленоиды являются «индуктивными» устройствами, поэтому требуется некоторая электрическая защита через катушку соленоида для предотвращения повреждения полупроводникового переключающего устройства высокими обратными ЭДС. В этом случае используется стандартный «Диод маховика», но вы также можете использовать стабилитрон или варистор малого значения.

Обратите внимание

На многих современных автомобилях есть функция самодиагностики. В случае, если уровень сопротивления увеличивается на одном из соленоидов, данный сигнал поступает на ЭБУ, а затем на панели загорается соответствующая ошибка.

Также отметим, что не все клапаны можно проверить посредством мультиметра. Это касается современных PWM-соленоидов. Они имеют сложную конструкцию и требуют наличие компьютера для проверки кривой (по ней меряется уровень давления в зависимости от подаваемого тока). Эту операцию лучше доверить квалифицированному электрику.

Рабочий цикл соленоида

Другим более практичным способом уменьшения тепла, выделяемого катушкой соленоидов, является использование «прерывистого рабочего цикла». Прерывистый рабочий цикл означает, что катушка многократно переключается «ВКЛ» и «ВЫКЛ» на подходящей частоте, чтобы активировать механизм плунжера, но не дать ему обесточиться во время периода ВЫКЛ. Прерывистое переключение рабочего цикла является очень эффективным способом уменьшения общей мощности, потребляемой катушкой.

Рабочий цикл (% ED) соленоида — это часть времени «ВКЛ», когда на электромагнит подается напряжение, и это отношение времени «ВКЛ» к общему времени «ВКЛ» и «ВЫКЛ» для одного полного цикла операций. Другими словами, время цикла равно времени включения плюс время выключения. Рабочий цикл выражается в процентах, например:

Будет интересно➡ Что такое подстроечный резистор: описание устройства и область его применения

Затем, если соленоид включен или включен на 30 секунд, а затем выключен на 90 секунд перед повторным включением, один полный цикл, общее время цикла включения / выключения составит 120 секунд, (30 + 90) поэтому рабочий цикл соленоидов будет рассчитываться как 30/120 сек или 25%. Это означает, что вы можете определить максимальное время включения соленоидов, если вам известны значения рабочего цикла и времени выключения.

Например, время выключения равно 15 секундам, рабочий цикл равен 40%, поэтому время включения равно 10 секундам. Соленоид с номинальным рабочим циклом 100% означает, что он имеет постоянное номинальное напряжение и поэтому может быть оставлен включенным или постоянно включен без перегрева или повреждения. В этом уроке о соленоидах мы рассматривали как линейный соленоид, так и вращающийся соленоид как электромеханический привод, который можно использовать в качестве выходного устройства для управления физическим процессом. В следующем уроке мы продолжим рассмотрение устройств вывода, называемых исполнительными механизмами, и устройства, которое снова преобразует электрический сигнал в соответствующее вращательное движение, используя электромагнетизм. Тип устройства вывода, которое мы рассмотрим в следующем уроке — это двигатель постоянного тока.

Материал по теме: Что такое реле времени.

Что далее?

Итак, мы определили, что электромагнитный клапан неисправен. Выход из ситуации только один – замена. Промывке он не подвергается. Эта процедура не решит проблему высокого сопротивления. Как производится замена соленоидов:

  • С трансмиссии снимается гидравлический блок (предварительно сливается масло).
  • Отсоединяются все разъемы от соленоида.
  • Откручиваются крепления клапана. Последний снимается с гидравлического блока.
  • На место старого соленоида устанавливается новый.
  • Подключаются все разъемы к нему.
  • Устанавливается на место гидравлический блок.
  • Заливается масло в том же объеме.

Все, на этом процедура ремонта завершена. Как видите, проверить соленоид АКПП и заменить его не так уж и сложно.

Что такое соленоид и как он работает?

То есть соленоид — это катушка, по форме напоминающая трубу. Соленоиды, в широком смысле, — это катушки индуктивности, наматываемые проводником на цилиндрический каркас, которые могут быть как однослойными, так и многослойными.

Интересные материалы:

Беспроводные наушники как выбрать лучшие? Беспроводные наушники как выбрать? Беспроводные наушники как заряжать? Беспроводные наушники на сколько хватает заряда? Беспроводные наушники самсунг как пользоваться? Bluetooth наушники как выбрать? Чем можно почистить разъем для наушников? Чем опасны беспроводные наушники? Чем отличаются вкладыши от вакуумных наушников? Чем полноразмерные наушники отличаются от накладных?

Электромагнитный клапан газовой колонки не срабатывает.

Гость писал(а): перестала включатся газовая колонка, газ просто не загорается. Вода идет, давление есть в системе, газ открыт – не загорается и все на этом. Колонка полностью автомат, делать в ней как мастер объяснил – ничего не надо, она сама работает, зажигается и отключается. После того, как жена помылась колонка перестала включатся.

Также не согласна, что «90% – причина в севших батарейках». Причиной «Газ открыт – не загорается» может быть и датчик протока, автоматика просто «не видит», что проток воды через колонку есть. А может быть проблема в газовом клапане. Гадать можно долго.

В любом случае, начните с замены батареек (если у вас розжиг от них), не поможет – вызывайте специально обученного человека. За диагностикуплатить, конечно, придётся. Зато он точную причину проблем установит.

Управление функционированием соленоидов линейного давления

Контроль над функционированием механизма обеспечивается за счет компьютера, подсоединенного к клапанам, работающим от электричества. Объединение нескольких элементов в коробке выполнено с использованием ленточного кабеля. Эти приспособления передают сигналы к электрическим клапанам, и считаются наиболее уязвимым местом во всей конструкции, так как нередко ломаются.

Если у вас возникли проблемы при использовании соленоида, нужно проверить исправность шлейфа. В такой ситуации нужен незамедлительный ремонт соленоидов АКПП.

Статья в тему: Как научится водить машину на МКПП?

В большей части коробок переключения передач гидравлические модули находятся в нижней области конструкции. Лишь в отдельно взятых устройствах они располагаются с той или иной стороны. Установка клапанов в нижней части позволяет отремонтировать изделие без лишних усилий.

Замена соленоидов в автомобильной АКПП должна осуществляться в специализированных сервисах. Эта работа исполняется мастерами без изъятия устройства из транспортного средства и после предварительной проверки соленоида в АКПП.

Принцип работы электромагнитного клапана. Особенности

Если рассматривать статическое положение, то в этот момент катушка клапана будет обесточена, более того, клапан закрывается вовсе, но он может быть и открыт, так как здесь все зависит от его типа. Что касается мембраны, поршня, то эти детали находятся в соприкосновении с седлом изделия.

Важно отметить, что как только происходит электрическое напряжение на катушку, это приводит к тому, что клапан начинает открываться. Такое действие начинает происходить с помощью магнитного поля, которое и создается в катушке.

В тот момент, когда потребитель пожелает приобрести газовый клапан ГБО, то он должен понимать, что в обязательном порядке нужно будет учитывать технические характеристики, это касается и конструктивных особенностей. Это объясняется тем, что далеко не все существующие клапаны смогут направить движение среды в ту или иную сторону.

Встречаются такие варианты, которые работают при определенном направлении движения потока рабочей среды. В том случае, если проигнорировать подобные факторы, это приведет к тому, что изделия потеряют свою работоспособность. Так что, выбирая заправочный клапан ГБО, нужно помнить: устройство должно быть детально и внимательно изучено.

Процедура электрической проверки катушки индуктивности:

Электрическая проверка катушек индуктивности включает провер­ку на обрыв, обнаружение короткозамкнутых витков и определение состояния изоляции обмотки.

Проверка на обрыв выполняется пробником. Увеличение сопротив­ления означает обрыв или плохой контакт одной или нескольких жил литцендрата. Уменьшение сопротивления означает наличие межвиткового замыкания. При коротком замыкании выводов сопротивление рав­но нулю. Для более точного представления о неисправности катушки необходимо измерить индуктивность. В заключение рекомендуется про­верить работоспособность катушки в таком же заведомо исправном аппарате, для которого она предназначена.

P.S.: Я постарался наглядно показать и описать не хитрые советы. Надеюсь, что хоть что-то вам пригодятся. Но это далеко не всё что возможно выдумать, так что дерзайте, и штудируйте сайт https://bip-mip.com/

  1. Как проверять резисторы и конденсаторыНачинающим радиолюбителям пригодится фундаментальное знание о том, как проверить резистор.
  2. Электроискровой карандашГравировать на металле можно разными приспособлениями начиная от штихелей и.

Источник: bip-mip.com

Подводим итоги

Соленоид – это весьма важный элемент в любой автоматической коробке. Данные клапаны имеют немалый ресурс, но из-за высоких нагрузок чаще выходят из строя. Поэтому нужно знать, как проверить соленоид АКПП и изучить сторонние признаки. Если машина стала себя вести не так, как раньше (то бишь появились толчки и рывки при переключении), возможно, проблема именно в соленоидах. Каким-либо еще образом (кроме как измерением соправителя и компьютерной диагностикой) точно выяснить неисправность нельзя. Но если на панели загорелась соответствующая лампа, это уже повод для беспокойства.

Магнитное поле, создаваемое катушкой

Когда электрический ток проходит через обмотки катушек, он ведет себя как электромагнит, и плунжер, который находится внутри катушки, притягивается к центру катушки с помощью магнитного потока внутри корпуса катушек, который, в свою очередь, сжимает небольшая пружина прикреплена к одному концу плунжера. Сила и скорость движения плунжеров определяются силой магнитного потока, генерируемого внутри катушки.

Когда ток питания выключен (обесточен), электромагнитное поле, созданное ранее катушкой, разрушается, и энергия, накопленная в сжатой пружине, заставляет поршень вернуться в исходное положение покоя. Это движение плунжера вперед и назад известно как «ход» соленоидов, другими словами, максимальное расстояние, на которое плунжер может проходить в направлении «вход» или «выход», например, 0–30 мм.

Такой тип соленоида обычно называется линейным соленоидом из-за линейного направленного движения и действия плунжера. Линейные соленоиды доступны в двух основных конфигурациях, которые называются «тягового типа», так как он тянет подключенную нагрузку к себе, когда они находятся под напряжением, и «толкающего типа», которые действуют в противоположном направлении, отталкивая его от себя при подаче питания. Как притягивающие, так и толкающие типы обычно имеют одинаковую конструкцию, с разницей в расположении возвратной пружины и конструкции плунжера.

Подробная инструкция

Для проверки соленоида его необходимо переключить в режим «омметра». Отыскать соленоид в автомобиле можно посредством технической документации, которая идет с каждым транспортным средством. Соленоид должен быть подключен к бортовому компьютеру. Обратить внимание и на то, в каком состоянии находится клапан. Он может быть закрытым или открытым.

  1. Следующим этапом следует проверка электрического сопротивления соленоида. В работе потребуется применить омметр, который следует подключить к клеммам компонента. О том, каким сопротивлением должен обладать соленоид в горячем и холодном состоянии, указано в технической документации. Проверить контур компонента на замыкание. Необходимо каждый контакт через корпус автомобиля замкнуть. В течение долгого периода эксплуатации в соленоиде скапливается большое количество загрязняющих компонентов. По возможности следует промыть соленоид в бензине. Возможно, что приходится иметь дело с неразборным компонентом. Тогда придется заменить старый соленоид на новый, и можно быть уверенным в том, что проблема устранена.
  2. Соленоид является источником мощного магнитного поля. В результате этого внутри скапливается большое количество металлических микрочастиц. Они оседают на стенках каналов и вскоре начинают препятствовать нормальной работе клапана. Подвижные части работают с перебоями. Удалять металлические микрочастицы можно посредством компрессора. Высокое давление воздуха удалит весь мусор, скопившийся за несколько лет или месяцев эксплуатации. Не забыть обратить внимание на то, в каком состоянии должен находиться клапан в обычном состоянии.
  3. Если соленоид закрыт в нормальном положении, то выполнить простой тест. Отключить устройство от источника питания. После этого направить струю воздуха, которая должна задерживаться внутри, а не выходить через выходной канал. Подать напряжение на соленоид. В данной ситуации воздушная струя должна начать выходить через выходной канал. Если условия выполняются, то можно сказать, что компонент находится в пригодном состоянии.
  4. С иной ситуацией придется столкнуться в случае с нормально открытым соленоидом. Как только компонент был обесточен, воздух должен начать выходить через выходной клапан. При подаче тока канал запирается, и воздух остается внутри.

Расположение соленоидов АКПП и их эксплуатационный ресурс

Искать электроклапаны нужно в нижней части коробки передач — в гидравлической клапанной плите, иначе называемой гидроблоком. Крепятся клапаны с помощью болтов или прижимной пластины. В отдельных моделях АКПП гидроблок находится не в нижней части агрегата, а сбоку. В обоих случаях можно видеть шлейф-проводку с выводами на штекеры, которые соединяет соленоиды с бортовой электросистемой.

В силу разнообразия конструктивных решений уверенно говорить о том, каков ресурс соленоидов, попросту невозможно. Можно лишь отметить некоторые их особенности и обратиться к информации от производителей. Так, например, VFS-соленоидами снабжены одни из самых распространенных коробок-автоматов: ZF 6HP21-6HP28. Такие регуляторы в среднем требуют замены раз в 3-5 лет активной эксплуатации. Столь небольшой ресурс обусловлен тем, что вследствие износа в соленоидах меняется степень открытия канала. Блок управления подстраивается под такие изменения, но лишь до определенного момента. Более простые PMW-соленоиды сегодня собирают из анодированных деталей, так что изделие становится более долговечным — ресурс составляет 6-7 лет, зачастую и того больше. Весьма распространенные линейные соленоиды обычно служат порядка 5-6 лет. В отдельных случаях даже изношенное устройство можно «реанимировать» посредством очистки, замены втулки, уплотнителей, колец и других элементов.

Типы датчиков АБС

На современных автомобилях наиболее часто встречаются три вида датчиков АБС, это:

  1. пассивный тип – его основой является индукционная катушка;
  2. магниторезонансный – действует на основе изменения сопротивления материалов под воздействием магнитного поля;
  3. активный – работает на принципах эффекта Холла.

Пассивные датчики начинают работать с началом движения и считывают информацию с зубчатого импульсного кольца. Проходящий мимо устройства металлический зубец провоцирует генерацию импульса тока в нем, который передается на ЭБУ. Датчики включаются в работу при скорости движения от 5 км/ч. Загрязнения не оказывают на их работу никакого влияния.

Активные датчики состоят из компонентов электроники и постоянного магнита расположенного на ступице. При прохождении магнита мимо устройства в нем образуется разность потенциалов, которая генерируется в сигнал управления микросхемой. После данные считываются электронным блоком управления. Такие датчики АБС встречаются крайне редко и ремонту не подлежат.

Пассивный тип датчиков АБС

Конструкционно простое и надежное устройство с большими сроками службы. Не требует дополнительно питания. Он состоит из индукционной катушки внутри которой размещен магнит с металлическим сердечником.

При движении авто металлические зубцы ротора проходят через магнитное поле сердечника, тем самым изменяя его и образуя переменные ток в обмотке. Чем выше скорость движения транспорта тем больше частота и амплитуда тока. Исходя из получаемых данных ЭБУ дает команды магнитным клапанам. К преимуществам датчиков такого типа можно отнести не высокую стоимость и простоту замены.

Недостатки пассивного датчика АБС:

  • сравнительно большой размер;
  • невысокая точность данных;
  • не включается в работу при скорости до 5 км/ч;
  • срабатывает при минимальных вращениях колеса.

Магниторезонансный датчик АБС

В основе их работы лежит возможность изменять электрическое сопротивление ферромагнитного материала под воздействием постоянного магнитного поля. Участок датчика отвечающий за контроль изменений изготовлен из двух либо четырех слоев железоникелевых пластин с размещенными на них проводниками. Другая часть установлена в интегральную схему и считывает изменения сопротивления образуя контрольный сигнал.

Ротор при такой конструкции изготовлен из пластикового кольца с магнитными участками и жестко закреплено на ступице колеса. При движении машины магнитные участки ротора воздействуют на магнитное поле пластин чувствительного элемента, что регистрирует схема. Образуется и передается на блок управления импульсный сигнал.

На основе эффекта Холла

В основе его работы используется эффект Холла. На разных концах плоского проводника, размещенном в магнитном поле, образуется поперечная разность потенциалов.

В датчиках такой проводник – это квадратная металлическая пластина размещенная в микросхеме, включающая в себя интегральную схему Холла и контролирующая электронную схему. Датчик АБС размещается напротив импульсного ротора. Ротор может быть выполнен полностью из металла с зубцами или в виде пластикового кольца с магнитными участками, и жестко закреплен на ступице колеса.

В такой схеме постоянно образуются сигнальные всплески с определенной частотой. В спокойном состоянии частота минимальная. При движении металлические зубцы либо магнитные участки проходят через магнитное поле и вызывает изменение тока в датчике, что отслеживается и фиксируется схемой. Исходя из этих данных формируется и передается сигнал на ЭБУ.

Электромагнитная катушка — это магнит, который работает при подаче на него напряжения и притягивает прижимную пластину, которая соединена с валом компрессора шлицевым соединением. Т.е. в электромагнитной муфте именно катушка отвечает за сцепление шкива с валом компрессора, т.к. по сути она запускает всю систему автомобильного кондиционера.

Электромагнит является наиболее частой причиной поломки кондиционера, поэтому его правильная диагностика очень важна при выявлении неполадок с кондиционером. Поэтому эта статья посвящена именно электромагнитной катушке и всем связанным с ней поломкам. 

Тестером — проверить сопротивление. Если меньше 2 Ом, то внутри обмотки короткое замыкание.

Подать 12 Вольт от аккумулятора или любого блока питания, проверить работоспособность — будет видно искру при замыкании на «+», при подаче напряжения катушка должна магнитить.

1. Перегрев — от изношенного подшипника шкива, от пробуксовки шкива и прижимной пластины (большого зазора, избыточного давления (вследствие плохого обдува радиатора кондиционера или неисправности вентилятора охлаждения, как следствия — подклинивания), клина компрессора)

2. Неправильная установка мастером-установщиком (если перепутает + и -)

Самое простое и правильное – замена электромагнита на новый, с устранением причины поломки неисправной. Стоимость магнита не велика, экономить на этом не стоит. Если пробег автомобиля более 100 000 км, то наиболее правильным решением будет замена электромагнитной муфты в сборе, т.к. заменив весь узел, вы предупреждаете возникновение последующих проблем в электромагнитной муфте компрессора (шум подшипника, истирание прижимных плоскостей приводной пластины и шкива)

Но если нужен более бюджетный вариант — можно расплавить защитный слой обмотки, найти термопредохранитель и поменять его или поменять его на провод (но тогда будет отсутствовать защита компрессора от перегрева). Затем залить всё обратно эпоксидкой или термостойким клеем. Метод сложный, но, в принципе, рабочий.

Еще можно перемотать обмотку катушки, но это мы не рекомендуем делать, т.к. в не заводских условиях качественно это сделать не получится. Перемотанная катушка долго не продержится. Тем более, что цена этого мероприятия практически равна цене новой катушки.

Если вы обращаетесь в автосервис, проследите, в случае поломки электромагнита, именно заменили его на новый, а не отремонтировали самым бюджетным способом.

Подбираются катушки по образцу, по размерам (внешний, внутренний диаметр, диаметр посадочного места и толщина) или по модели компрессора (если компрессор популярный). По маркет и модели автомобиля точно подобрать электромагнитную катушку практически невозможно, это нужно учитывать при подборе.

Также посмотрите наше видео о диагностике электромагнитной катушки:

Как проверить электромагнитную катушку мультиметром

Обрыв обмотки электрической катушки. Как проверить катушку и найти обрыв.

Тема: что делать если оборвалась обмотка катушки, как проверить на обрыв.

Когда обрывается электрическая обмотка, по которой протекает ток, то или иное устройство обычно выходит из строя (так как любые обмотки как правило играют важную функциональную роль в работе электрических приборов). Давайте с Вами рассмотрим данную проблему более тщательно, выяснив для себя важные моменты. Итак, в большинстве случаев обмотка из медного провода используется в трансформаторах, электродвигателях и электрогенераторах, клапанах, электромагнитах, реле, контакторах, катушках индуктивности и т.д.

Наиболее значимым физическим эффектом, которым обладают электрические катушки является индукция электромагнитных полей. Именно когда электрический ток протекает через обмотку провода вокруг неё образуется достаточно интенсивное электромагнитное поле, что даёт возможность влиять, как на механическое движение, так и на генерацию электродвижущей силы (наводимой на другой обмотке, находящаяся рядом). Следовательно при обрыве обмотки обрывается контакт и движение электрического тока прекращается, в результате чего прекращаются процессы взаимодействия с электромагнитными полями.

Как можно вычислить обрыв обмотки? Проверив её на целостность, предварительно прозвонив её тестером. Но не всё так просто. Одно дело, когда электрическая обмотка просто оборвалась в результате отгарания или механического повреждения. И другое дело случаи, когда устройство, содержащее обмотку, подвергается периодическому перегреву. В результате чего нарушается качество изоляционного покрова обмотки (происходит постепенное разрушение изоляционного лака). Это ведёт к появлению короткозамкнутых витков, что способствует ещё большему нагреву катушки с последующим выходом её из строя. То есть, происходит отгарание провода (или вовсе выгорание всей обмотки) и обрыв катушки.

Если электрическая катушка с обмоткой находится на устройстве, для проверки её необходимо выпаять (что бы исключить прозвонку через другие электрические цепи прибора). И только когда обмотка электрически не связана с другими цепями её можно прозванивать тестером на внутреннее сопротивление. Если оно есть (при отсутствии короткозамкнутых витков), значит с Вашей обмоткой всё нормально, она рабочая. Если же тестер, прозвонка не показывает сопротивление, величина которого зависит от длины провода обмотки, её сечения, материала (хотя в основном используется медь) значит Ваша обмотка имеет обрыв.

Исходя из практики достаточно большое количество обрывов обмоток связано со следующими причинами — это плохая пайка концов обмотки к клеммным выводам устройства, перегорание провода в наиболее уязвимых местах (места частого перегиба, ранее механически повреждённого), случайное механическое повреждение при неправильной эксплуатации, профилактических работах, перегрев устройства с обмоткой при коротких замыканиях и токовых перегрузках.

Чаще всего обрыв обмотки находиться в месте самих выводов этой самой обмотки, месте их спая с проводом, удлиняющих эти самые выводы. Такие обрывы легко находить и устранять, они видны не вооружённым взглядом. Их просто обратно спаивают и изолируют при необходимости. Гораздо хуже дело обстоит, когда этот самый обрыв обмотки произошёл внутри самой обмотки. Тут уж нужно будет подумать, что будет проще, либо размотать катушку до места обрыва, его устранить и намотать провод обратно, либо просто заменить обмотку на новую (перемотав её), либо же вовсе заменить всё устройство, содержащее эту самую обмотку.

Простейшие способы проверки исправности электрорадиоэлементов

Проверка проволочных и непроволочных резисторов

Для проверки проволочного и непроволочного резисторов постоянного и переменного сопротивления необходимо проделать следующее: произвести внешний осмотр; проверить работу движущего механизма переменного резистора и состояние его частей; по маркировке и размерам определить номинальную величину сопротивления, допустимую мощность рассеяния и класс точности; омметром измерить действительную величину сопротивления и определить отклонение от номинала; у переменных резисторов измерить еще и плавность изменения сопротивления при движении ползунка. Резистор исправен, если нет механических повреждений, величина его сопротивления находится в допустимых пределах данного класса точности, а контакт ползунка с токопроводящим слоем постоянен и надежен.

Проверка конденсаторов всех типов

К электрическим неисправностям относятся: пробой конденсаторов; короткое замыкание пластин; изменение номинальной емкости сверх допуска из-за старения диэлектрика, попадания на него влаги, перегрева, деформации; повышение тока утечки из-за ухудшения изоляции. Полная или частичная потеря емкости электролитических конденсаторов происходит в результате высыхания электролита.

Простейший способ проверки исправности конденсатора — внешний осмотр, при котором обнаруживаются механические повреждения. Если при внешнем осмотре дефекты не обнаружены, проводят электрическую проверку. Она включает: проверку на короткое замыкание, на пробой, на целость выводов, проверку тока утечки (сопротивление изоляции), измерение емкости. При отсутствии специального прибора емкость можно проверить другими способами, зависящими от емкости конденсаторов.

Конденсаторы большой емкости (1 мкФ и выше) проверяют пробником (омметром), подключая его к выводам конденсатора. Если конденсатор исправен, то стрелка прибора медленно возвращается в исходное положение. Если же утечка велика, то стрелка прибора не вернется в исходное положение.

Конденсаторы средней емкости (от 500 пФ до 1 мкФ) проверяют с помощью последовательно подключенных к выводам конденсатора телефонов и источника тока. При исправном конденсаторе в момент замыкания цепи в телефонах прослушивается щелчок.

Конденсаторы малой емкости (до 500 пФ) проверяют в цепи тока высокой частоты. Конденсатор включают между антенной и приемником. Если громкость приема не уменьшится, значит, обрывов выводов нет.

Проверка катушек индуктивности

Проверка исправности катушек индуктивности начинается с внешнего осмотра, в ходе которого убеждаются в исправности каркаса, экрана, выводов; в правильности и надежности соединений всех деталей катушки между собой; в отсутствии видимых обрывов проводов, замыканий, повреждения изоляции и покрытий. Особое внимание следует обращать на места обугливания изоляции, каркаса, почернение или оплавление заливки.

Электрическая проверка катушек индуктивности включает проверку на обрыв, обнаружение короткозамкнутых витков и определение состояния изоляции обмотки. Проверка на обрыв выполняется пробником. Увеличение сопротивления означает обрыв или плохой контакт одной или нескольких жил. Уменьшение сопротивления означает наличие межвиткового замыкания. При коротком замыкании выводов сопротивление равно нулю.

Для более точного представления о неисправности катушки необходимо измерить индуктивность. В заключение рекомендуется проверить работоспособность катушки в таком же заведомо исправном аппарате, для которого она предназначена.

Проверка силовых трансформаторов, трансформаторов и дросселей низкой частоты

По конструкции и технологии изготовления силовые трансформаторы, трансформаторы и электрические дроссели НЧ имеют много общего. Те и другие состоят из обмоток, выполненных изолированным проводом, и сердечника. Неисправности трансформаторов и дросселей НЧ делятся на механические и электрические.

К механическим неисправностям относятся: поломка экрана, сердечника, выводов, каркаса и крепежной арматуры, к электрическим — обрывы обмоток; замыкания между витками обмоток; короткое замыкание обмотки на корпус, сердечник, экран или арматуру; пробой между обмотками, на корпус или между витками одной обмотки; уменьшение сопротивления изоляции; местные перегревы.

Проверку исправности трансформаторов и дросселей НЧ начинают с внешнего осмотра. В ходе его выявляют и устраняют все видимые механические дефекты. Проверка на короткое замыкание между обмотками, между обмотками и корпусом производится омметром. Прибор включают между выводами разных обмоток, а также между одним из выводов и корпусом. Так же проверяется и сопротивление изоляции, которое должно быть не менее 100 МОм для герметизированных трансформаторов и не менее десятков МОм для негерметизированных.

Самая сложная проверка на межвитковые замыкания. Известно несколько способов проверки трансформаторов.

1. Измерение омического сопротивления обмотки и сравнение результатов с паспортными данными. (Способ простой, но не точный, особенно при малой величине омического сопротивления обмоток и малом числе короткозамкнутых витков.)

2. Проверка катушки с помощью специального прибора — анализатора короткозамкнутых витков.

3. Проверка коэффициентов трансформации на холостом ходу. Коэффициент трансформации определяется как отношение напряжений, показываемых двумя вольтметрами. При наличии межвитковых замыканий коэффициент трансформации будет меньше нормы.

4. Измерение индуктивности обмотки.

5. Измерение потребляемой мощности на холостом ходу. У силовых трансформаторов одним из признаков короткозамкнутых витков является чрезмерный нагрев обмотки.

Простейшая проверка исправности полупроводниковых диодов

Простейшая проверка исправности полупроводниковых диодов заключается в измерении их прямого Rnp и обратного Rо6p сопротивлений. Чем больше соотношение Rо6p/Rnp, тем выше качество диода. Для измерения диод подключается к тестеру (омметру) или к ампервольтомметру. При этом выходное напряжение измерительного прибора не должно превышать максимально допустимого для данного полупроводникового прибора.

Простая проверка транзисторов

При ремонте бытовой радиоаппаратуры возникает необходимость проверить исправность полупроводниковых триодов (транзисторов) без выпайки их из схемы. Один из способов такой проверки — измерение омметром сопротивления между выводами эмиттера и коллектора при соединении базы с коллектором и при соединении базы с эмиттером. При этом источник коллекторного питания отключается от схемы. При исправном транзисторе в первом случае омметр покажет малое сопротивление, во втором — порядка нескольких сотен тысяч или десятков тысяч ом.

Проверка транзисторов, не включенных в схему, на отсутствие коротких замыканий производится измерением сопротивления между их электродами. Для этого омметр подключают поочередно к базе и эмиттеру, к базе и коллектору, к эмиттеру и коллектору, меняя полярность подключения омметра. Поскольку транзистор состоит из двух переходов, причем каждый из них представляет собой полупроводниковый диод, проверить транзистор можно так же, как проверяют диод. Для проверки исправности транзисторов омметр подключают к соответствующим выводам транзистора. У исправного транзистора прямые сопротивления переходов составляют 30 — 50 Ом, а обратные 0,5 — 2 МОм. При значительных отклонениях этих величин транзистор можно считать неисправным. Для более тщательной проверки транзисторов используются специальные приборы.

Как проверить дроссель с помощью мультиметра

Одним из компонентов схем различных электронных и электротехнических приборов является дроссель. Дросселем называют катушку индуктивности, которая при работе в электрических схемах ограничивает проводимость для переменного тока и беспрепятственно пропускает ток постоянный. Это свойство дросселя используется для сглаживания переменной составляющей токов. Проверка дросселя осуществляется мультиметром или специальным тестером.

Назначение и устройство

В некоторых приборах дроссели устанавливаются для того, что бы пропускать импульсные токи определенного диапазона частот. Диапазон этот зависит от конструктивного решения дросселя, то есть от применяемого в катушке провода, его сечения, количества витков, наличия сердечника и материала, из которого он изготовлен.

Конструктивно дроссель представляет собой намотанный на сердечник изолированный провод. Сердечник может быть металлическим, набранным из изолированных пластин или ферритовым. Иногда дроссель может выполняться без сердечника. В этом случае используется керамический или пластмассовый каркас для провода.

Дроссельная заслонка присутствует в карбюраторе. Она регулирует подачу горючей смеси, представляя собой потенциометр. Чтобы проверить датчик дроссельной заслонки в автомобиле, определяют соответствие входного напряжения устройства положению заслонки.

В мультиметре выставляют режим прозвонки. Контакты разъема датчика соединяют со щупами мультиметра и создают видимость движения заслонки (пальцами). При этом проверяют, как реагирует датчик в крайних положениях заслонки. Должен идти чистый сигнал без хрипов.

В светильниках

В светильниках, предусмотренных для использования ламп дневного света, помимо самих ламп, применяются такие компоненты, как стартер и дроссель.

Стартер, как следует из названия, запускает процесс свечения в лампе, и далее в процессе не участвует. Дроссель выполняет функции стабилизатора тока и напряжения в течение всего периода свечения лампы.

Если дроссель неисправен, лампа не горит, или горит не устойчиво, свечение ее неоднородно по всей длине, внутри могут появляться области с более ярким свечением, движущиеся от одного электрода лампы к другому. Иногда можно заметить эффект мерцания света.

Лампа при неисправном дросселе может не загореться с первого раза, и стартер будет многократно включаться, пока, наконец, процесс свечения не запустится. В результате, в местах установки спиралей, на колбе лампы появятся потемнения. Это связано с тем, что спирали работают более продолжительное время, чем установлено для нормального запуска.

Проверка в лампах

Проверку дросселя необходимо произвести, если наблюдается одно из вышеописанных явлений при работе лампы дневного света, а также, если замечено появление характерного запаха подгорающей изоляции, появление звуков, нехарактерных для работы прибора, а также в том случае, если лампа не включается.

До того, как проверить дроссель лампы, проверяются сама лампа и стартер.

Неисправность дросселя может заключаться в обрыве или перегорании провода катушки или межвитковом замыкании, вызванном пробоем или подгоранием изоляции.

Обе неисправности могут произойти либо вследствие длительного времени использования прибора, либо в результате какого-либо механического воздействия. Возможно перегорание провода катушки в результате подачи на нее тока большего, чем максимальный, на который рассчитан дроссель.

В случае обрыва или перегорания провода, можно выявить неисправность обычным тестером или мультиметром. В силу того, что дроссель пропускает постоянный ток, замкнув цепь тестера через катушку, по свечению контрольной лампы или его отсутствию можно понять, есть обрыв или нет.

Если при измерении мультиметром, сопротивление бесконечно, имеет место обрыв провода катушки.

Проверка межвиткового замыкания

В случае межвиткового замыкания, проверка тестером результата не даст. В этом случае необходимо знать, как проверять дроссель при помощи мультиметра.

Межвитковое замыкание имеет место при непосредственном гальваническом контакте двух витков или при контакте витков с металлическим сердечником. Очевидно, что в этом случае сопротивление катушки уменьшается.

Возможен редкий случай, когда измерение сопротивления катушки не даст достоверной картины ее состояния. Такое может случиться при обрыве и межвитковом замыкании одновременно.

В этом случае межвитковое замыкание может оказаться параллельным обрыву, и несколько витков просто не будут участвовать в измерении. Исправный, казалось бы, дроссель будет работать некорректно.

Для проверки катушки на наличие межвиткового замыкания, аналоговый мультиметр в режиме миллиамперметра необходимо использовать в составе прибора, собранного на двух транзисторах.

Схема прибора приведена на рисунке.

Сам прибор представляет собой генератор низкой частоты. При сборке схемы используются любые транзисторы из линейки МП39-МП42 (коэффициент усиления 40-50).

Диоды можно использовать типа Д1 или Д2 с любым индексом. Резисторы применяются любого типа, рассчитанные на мощность не менее 0,12 Вт. Питание прибора осуществляется от источника постоянного тока, напряжением 7-9 В.

Последовательность действия

Порядок проверки следующий:

  1. включается тумблер Вк. При этом стрелка мультиметра должна отклониться до середины шкалы;
  2. в зависимости от индуктивности катушки, устанавливается положение движка переменного резистора R5. Левое положение соответствует меньшей, а правое – большей индуктивности. При проверке катушек с индуктивностью менее 15 мГн, необходимо дополнительно нажать кнопку Кн2;
  3. к клеммам Lx подключаются выводы дросселя и замыкается кнопкой контакт Кн1. При этом, если в обмотке нет витков, короткозамкнутых между собой, стрелка мультиметра должна отклониться в сторону больших значений или же незначительно отклониться в сторону меньших. Если в обмотке есть хоть одно замыкание между витками, стрелка возвращается на нуль.

Иногда причиной неисправности катушки может стать разрушившийся или поврежденный сердечник. Материал, из которого выполнен сердечник, его размер и положение относительно катушки, влияют на индуктивность.

Проверка индуктивности

Наличие в арсенале мультиметра такой полезной функции, как измерение индуктивности катушек, будет полезным для проверки соответствия дросселя характеристикам, заявленным в справочной литературе. Функция присутствует только в некоторых моделях цифровых мультиметров.

Чтобы воспользоваться этой функцией, необходимо настроить мультиметр на измерение индуктивности. Контакты щупов присоединяются к выводам катушки. При первом измерении мультиметр устанавливается в наибольший диапазон измерений, и потом диапазон уменьшается для получения измерения достаточной точности.

При проведении всех измерений важно не допускать касания руками контактов, на которых измеряются те или иные параметры, иначе проводимость человеческого тела может изменить показания прибора.

Как проверить катушку зажигания

Проверить катушку зажигания автомобиля можно разными способами, но мы рассмотрим самые простые, которые под силу даже начинающим автолюбителям.

В нашем с Вами мире на данный момент используется три основных вида систем зажигания:

  1. Классическая система с разносчиком искры (трамблёр). Эта система морально устарела и уже давно не ставится на новые автомобили. Но на старых авто она ещё встречается часто
  2. Double ignition system (DIS) — эта система не имеет разносчика искры и за счёт этого получила широкое распространение. В народе она получила название — система с холостой искрой. Всё дело в том, что к одной катушке подключено две свечи и, соответственно, искровой пробой происходит одновременно сразу в двух цилиндрах — в одном на такте сжатия, а во втором на такте выпуска (холостая искра). Именно данная система установлена на Шевроле Лачетти
  3. Coil On Plug (COP) — дословный перевод — «катушка на свече». Название говорит само за себя. То есть, на каждую свечу одета собственная катушка. Это самая современная на данный момент система зажигания.

Системы зажигания постоянно модернизируются и усовершенствуются, но одно остаётся неизменным — применение принципа индуктивности для преобразования низкого напряжения в высокое. Другими словами — все эти системы объединяет использование катушек зажигания. Они могут отличаться по виду, мощности, напряжению и так далее, но принцип работы неизменен. Это значит, что и методы проверки практически одинаковы.

Принцип работы катушки зажигания

Катушку зажигания на простом языке можно назвать обычным повышающим напряжение трансформатором. Её задача преобразовать низковольтное напряжение (6-15В) в высокое (20-30кВ). Она, как и трансформатор, состоит из двух обмоток — первичной и вторичной. Первичная низковольтная катушка состоит из небольшого количества витков, а вторичная из большего.

Но есть ещё один нюанс. Витки в катушке расположены определённым образом, что позволяет катушке, кроме индуктивности, иметь ещё и ёмкость. То есть, своего рода — колебательный контур.

При подаче тока в первичную обмотку в катушке генерируется магнитное поле. Наведенное напряжение генерируется в катушке путем самоиндукции. В момент воспламенения ток в катушке прерывается выходным каскадом (в старых системах — контактами прерывателя). Мгновенно сворачивающееся магнитное поле генерирует высокое индукционное напряжение в первичной обмотке. Оно трансформируется на вторичной обмотке катушки и преобразуется в соотношении — количество витков вторичной обмотки отнесенное к количеству витков первичной обмотки. В свече зажигания происходит высоковольтный разряд с ионизацией искрового промежутка и прохождением тока. Это продолжается, пока накопленная энергия не будет истрачена.

Эти все физические явления, наверное, мало кому интересны, поэтому давайте отвлечёмся и посчитаем, на мой взгляд, интересные факты. Сколько раз свеча зажигания «производит» искру за свой срок службы?

Количество искрообразований = «об/мин» умножить на «количество цилиндров» и всё это разделить на 2. Возьмём обычный 4-цилиндровый 4-тактный двигатель. Допустим, обороты двигателя составляют 3000 об/мин. Значит количество искрообразований = 3000 х 4/2 = 6000 искр / мин!

Свечи я меняю раз в 30000 км.

Если пройденное расстояние составляет 30 000 км со средней частотой вращения коленчатого вала двигателя 3000 об/мин при средней скорости 60 км/ч, то количество искрообразований составляет 45 000 000 на каждую свечу зажигания! Во как трудится катушка зажигания! Как Золушка, прям

Поэтому катушка зажигания вполне заслуженно может когда-нибудь устать и молча выйти из строя.

Как проверить катушку зажигания

Катушку зажигания можно проверить несколькими способами:

  • заменой на заведомо исправную — это самый точный метод проверки
  • осциллографом мотор-тестера
  • омметром
  • «на искру»

Допустим, мы обычные автолюбители и у нас нет в запасе рабочих катушек и, уж тем более, мотор-тестера. Остаётся два последних варианта.

Но вариант «на искру» также требует некоторого оборудования, а именно — высоковольтного разрядника

Банальным выкручиванием свечи и проверкой искры абсолютно ничего не выяснишь. Искра будет и при исправной катушке и при уставшей. А вот при установке свечи обратно в цилиндр во втором случае искры уже не будет. Почему?

Потому что на напряжение пробоя влияет несколько факторов и самый главный из них — давление! Чем выше давление, тем больше требуется напряжение пробоя на одном и том же искровом промежутке.

То есть, чтобы пробить зазор 1мм в свече зажигания при атмосферном давлении (выкрученной свече) требуется гораздо меньшее напряжение, чем при большем давлении (вкрученной свече), так как давление в цилиндрах при работающем двигателе гораздо больше атмосферного.

А разрядник даёт возможность изменять расстояние между своими электродами в широких пределах. Это позволяет выставить зазор для проверки в несколько миллиметров. Но эти несколько миллиметров требуют такого же напряжения пробоя, как и 1мм на свече, ввернутой в цилиндр при работающем двигателе.

Как проверить катушку зажигания мультиметром

Остаётся самый простой способ, как проверить катушку зажигания — мультиметром. Этот прибор уже есть практически в каждом доме, поэтому это самый доступный способ проверки.

Суть проверки заключается в измерении сопротивления первичной и вторичной обмоток. Алгоритм действий одинаков для всех видов катушек. Отличия есть в сопротивлении первичной обмотки новых катушек по отношению к катушкам старого образца. Новые катушки имеют меньшее сопротивление первичной обмотки и за счёт этого удаётся получить более высокую энергию. В старых — около 3-4 Ом, а в новых — около 1-2 Ом.

Первым делом проверяем вторичную обмотку. Для этого необходимо установить мультиметр в режим измерения сопротивления до 20 кОм и подключить щупы к высоковольтным выводам катушки зажигания

Сопротивление должно быть около 13-14 кОм

Примечание! Сопротивление вторичной обмотки катушки зажигания имеет допуски. При температуре окружающей среды 21 градус сопротивление вторичной обмотки может составлять 11.5 кОм — 14 кОм. Также учитывайте температуру, погрешность Вашего омметра и сопротивление самих щупов!

То же самое делаем и со второй катушкой

Затем отключаем низковольтный разъём от катушки зажигания

Переводим мультиметр в режим измерения сопротивления до 200 Ом и подключаем щупы к низковольтным выводам катушки. Сопротивление должно быть около 1 -2 Ома при температуре окружающего воздуха 21 градус по Цельсию.

Так же проверяем вторую катушку зажигания.

На этом проверку можно закончить, но лучше ещё, конечно, снять катушки зажигания, очистить их и визуально осмотреть на наличие следов пробоя или трещин.

Снятие или замена катушек зажигания

Для этого понадобится всего два инструмента — торцевой ключ на 10 мм и крестовая отвёртка.

Отворачиваем три гайки крепления пластины катушек зажигания. Одна под первой катушкой

вторая между катушками вверху

третья под второй катушкой

Снимаем обе катушки в сборе

Останется только крестовой отвёрткой открутить 4 болтика и снять катушки с пластины.

Хочется отдельно обратить внимание на то, что если выйдет из строя одна из катушек, тогда перестанут работать сразу два цилиндра, что, согласитесь, будет ощущаться гораздо ярче, чем пропуски воспламенения в одном цилиндре. Поэтому если проблема возникает в одном конкретном цилиндре, тогда ищите проблему не в катушке зажигания.

Есть вопросы или дополнения? Пишите в комментариях.

25 сентября 2009

С появлением устройств электронного управления в повседневной жизни используется все меньше приборов, напрямую подключенных к сетям питания переменного напряжения. Как правило, переменное напряжение преобразуется в постоянное, а последнее используется для питания электронных приборов или электродвигателей с преобразователями, которые приходят на смену старомодным индукционным электродвигателям переменного напряжения. Кроме того, в тех случаях, когда это возможно, используется активная, а не пассивная компенсация коэффициента мощности (конденсаторная батарея). Это означает, что входной диодный мост устанавливается всегда, независимо от того, используется в системе каскад PFC или нет. Распространенная схема реализации этого принципа показана на рис. 1.

Рис. 1. Входной переменный ток и выпрямленный выходной сигнал

Такая схема обладает малой эффективностью, поскольку, независимо от номинала тока, два связанных диода всегда находятся в состоянии пропускания тока, вызывающем постоянное выпадение сигнала и последующую потерю мощности в зависимости от величины тока.

Во многих случаях, когда мощность, подаваемая на выход, не очень высока, а мощность, рассеиваемая на четырех диодах, низка, эта конфигурация может оставаться хорошим экономичным решением.

Обрыв обмотки электрической катушки. Как проверить катушку и найти обрыв.

Тема: что делать если оборвалась обмотка катушки, как проверить на обрыв.

Когда обрывается электрическая обмотка, по которой протекает ток, то или иное устройство обычно выходит из строя (так как любые обмотки как правило играют важную функциональную роль в работе электрических приборов). Давайте с Вами рассмотрим данную проблему более тщательно, выяснив для себя важные моменты. Итак, в большинстве случаев обмотка из медного провода используется в трансформаторах, электродвигателях и электрогенераторах, клапанах, электромагнитах, реле, контакторах, катушках индуктивности и т.д. Наиболее значимым физическим эффектом, которым обладают электрические катушки является индукция электромагнитных полей. Именно когда электрический ток протекает через обмотку провода вокруг неё образуется достаточно интенсивное электромагнитное поле, что даёт возможность влиять, как на механическое движение, так и на генерацию электродвижущей силы (наводимой на другой обмотке, находящаяся рядом). Следовательно при обрыве обмотки обрывается контакт и движение электрического тока прекращается, в результате чего прекращаются процессы взаимодействия с электромагнитными полями.
Как можно вычислить обрыв обмотки? Проверив её на целостность, предварительно прозвонив её тестером. Но не всё так просто. Одно дело, когда электрическая обмотка просто оборвалась в результате отгарания или механического повреждения. И другое дело случаи, когда устройство, содержащее обмотку, подвергается периодическому перегреву. В результате чего нарушается качество изоляционного покрова обмотки (происходит постепенное разрушение изоляционного лака). Это ведёт к появлению короткозамкнутых витков, что способствует ещё большему нагреву катушки с последующим выходом её из строя. То есть, происходит отгарание провода (или вовсе выгорание всей обмотки) и обрыв катушки.

Если электрическая катушка с обмоткой находится на устройстве, для проверки её необходимо выпаять (что бы исключить прозвонку через другие электрические цепи прибора). И только когда обмотка электрически не связана с другими цепями её можно прозванивать тестером на внутреннее сопротивление. Если оно есть (при отсутствии короткозамкнутых витков), значит с Вашей обмоткой всё нормально, она рабочая. Если же тестер, прозвонка не показывает сопротивление, величина которого зависит от длины провода обмотки, её сечения, материала (хотя в основном используется медь) значит Ваша обмотка имеет обрыв.

Исходя из практики достаточно большое количество обрывов обмоток связано со следующими причинами — это плохая пайка концов обмотки к клеммным выводам устройства, перегорание провода в наиболее уязвимых местах (места частого перегиба, ранее механически повреждённого), случайное механическое повреждение при неправильной эксплуатации, профилактических работах, перегрев устройства с обмоткой при коротких замыканиях и токовых перегрузках.

Чаще всего обрыв обмотки находиться в месте самих выводов этой самой обмотки, месте их спая с проводом, удлиняющих эти самые выводы. Такие обрывы легко находить и устранять, они видны не вооружённым взглядом. Их просто обратно спаивают и изолируют при необходимости. Гораздо хуже дело обстоит, когда этот самый обрыв обмотки произошёл внутри самой обмотки. Тут уж нужно будет подумать, что будет проще, либо размотать катушку до места обрыва, его устранить и намотать провод обратно, либо просто заменить обмотку на новую (перемотав её), либо же вовсе заменить всё устройство, содержащее эту самую обмотку.

Простейшие способы проверки исправности электрорадиоэлементов

Проверка проволочных и непроволочных резисторов

Для проверки проволочного и непроволочного резисторов постоянного и переменного сопротивления необходимо проделать следующее: произвести внешний осмотр; проверить работу движущего механизма переменного резистора и состояние его частей; по маркировке и размерам определить номинальную величину сопротивления, допустимую мощность рассеяния и класс точности; омметром измерить действительную величину сопротивления и определить отклонение от номинала; у переменных резисторов измерить еще и плавность изменения сопротивления при движении ползунка. Резистор исправен, если нет механических повреждений, величина его сопротивления находится в допустимых пределах данного класса точности, а контакт ползунка с токопроводящим слоем постоянен и надежен.

Проверка конденсаторов всех типов

К электрическим неисправностям относятся: пробой конденсаторов; короткое замыкание пластин; изменение номинальной емкости сверх допуска из-за старения диэлектрика, попадания на него влаги, перегрева, деформации; повышение тока утечки из-за ухудшения изоляции. Полная или частичная потеря емкости электролитических конденсаторов происходит в результате высыхания электролита.

Простейший способ проверки исправности конденсатора — внешний осмотр, при котором обнаруживаются механические повреждения. Если при внешнем осмотре дефекты не обнаружены, проводят электрическую проверку. Она включает: проверку на короткое замыкание, на пробой, на целость выводов, проверку тока утечки (сопротивление изоляции), измерение емкости. При отсутствии специального прибора емкость можно проверить другими способами, зависящими от емкости конденсаторов.

Конденсаторы большой емкости (1 мкФ и выше) проверяют пробником (омметром), подключая его к выводам конденсатора. Если конденсатор исправен, то стрелка прибора медленно возвращается в исходное положение. Если же утечка велика, то стрелка прибора не вернется в исходное положение.

Конденсаторы средней емкости (от 500 пФ до 1 мкФ) проверяют с помощью последовательно подключенных к выводам конденсатора телефонов и источника тока. При исправном конденсаторе в момент замыкания цепи в телефонах прослушивается щелчок.

Конденсаторы малой емкости (до 500 пФ) проверяют в цепи тока высокой частоты. Конденсатор включают между антенной и приемником. Если громкость приема не уменьшится, значит, обрывов выводов нет.

Проверка катушек индуктивности

Проверка исправности катушек индуктивности начинается с внешнего осмотра, в ходе которого убеждаются в исправности каркаса, экрана, выводов; в правильности и надежности соединений всех деталей катушки между собой; в отсутствии видимых обрывов проводов, замыканий, повреждения изоляции и покрытий. Особое внимание следует обращать на места обугливания изоляции, каркаса, почернение или оплавление заливки.

Электрическая проверка катушек индуктивности включает проверку на обрыв, обнаружение короткозамкнутых витков и определение состояния изоляции обмотки. Проверка на обрыв выполняется пробником. Увеличение сопротивления означает обрыв или плохой контакт одной или нескольких жил. Уменьшение сопротивления означает наличие межвиткового замыкания. При коротком замыкании выводов сопротивление равно нулю.

Моделирование системы

Система реализована в симуляторе Microcap Simulator, подготовлена специализированная модель для ИС IR1167 (см. рис. 4). Особое внимание уделено возможности работы модели IR1167 с плавающим заземлением, поскольку опорным сигналом двух верхних устройств схемы должно быть переменное напряжение сети питания, и использование ими потенциала заземления невозможно. Параметры моделирования следующие:

  • Vin = GOVpeak
  • F = 50 Гц
  • Rload = от 5 до 40 Ом
  • Gout = от 0 до 1000 мкФ — ESR = 300 МОм

Для проверки функциональности системы и эффективности замысла необходимо выполнить несколько попыток моделирования до начала реальной аппаратной реализации.

Резистивная нагрузка

Первая серия моделей создана с целью сравнения функционирования активного моста с функционированием стандартного моста на основе диодов Шоттки, на последующих рисунках будут показаны полученные результаты. Мост на основе диодов Шоттки построен из четырех устройств MBR10100 в корпусе TO220AB, для построения активного моста использован полевой транзистор DirectFet IRF6644 с поддержкой напряжения 100 В. На рис. 5 показан вариант с максимальной нагрузкой (5 Ом), с максимальным пиковым выходным током 12 A и средней выходной мощностью около 360 Вт.

Рис. 5. Rload = 5 Ом, Cout = 0 Верхний: Vin, Vout и Vo, Средний: Vg1, Vg2, Vg3 и Vg4, Нижний: Vo-Vo (диоды Шоттки), Pdiss (активный мост), Pdiss (диоды Шоттки), Pdiss (активный мост) — Pdiss (диоды Шоттки)

В этом случае мы можем видеть синусоидальное выходное напряжение (зеленая кривая) и ток (светло-голубая кривая), а в центре отображаются прямоугольные импульсы напряжения затворов полевых транзисторов низкого плеча. Также заслуживает внимания синусоидальная форма плавающего напряжения затвора МОП-структуры, изображенной на среднем графике, поскольку она должна соответствовать входной синусоиде с положительным сдвигом, равным 10,7 В (Vgate).

На третьем графике показано увеличение мощности при применении активного решения: синусоидой черного цвета показана мощность, рассеиваемая четырьмя диодами, которая достигает пика 18 Вт, тогда как тот же пик активного моста едва достигает значения 2,25 Вт, разность средних значений, показанная голубой кривой, составляет примерно 10 Вт. На малых нагрузках ситуация может отличаться, а более сложная цепь может не дать достаточного преимущества по сравнению с простым мостом, построенным из четырех диодов. Однако на рис. 6 приведены интересные результаты.

Рис. 6. Rload = 40 Ом, Cout = 0 Верхний: Vin, Vout и Vo, Средний: Vg1, Vg2, Vg3 и Vg4, Нижний: Vo-Vo (диоды Шоттки), Pdiss (активный мост), Pdiss (диоды Шоттки), Pdiss (активный мост) — Pdiss (диоды Шоттки)

В последнем случае выходная мощность составляет всего 45 Вт, мы также получили большую разность с точки зрения пиковой рассеиваемой мощности, которая составляет 0,036 Вт против 1,6 Вт, а средняя разность значений потери мощности — около 1 Вт.

Емкостная нагрузка

Емкостная нагрузка является более реальной для применения в силовом AC-DC-преобразователе. На рис. 7 и 8 показаны результаты моделирования с сопротивлением, равным соответственно 5…40 Ом, а суммарная выходная емкость равна 1000 мкФ.

Рис. 7. Rload = 5 Ом, Cout = 1000 Верхний: Vin, Vout и Vo, Средний: Vg1, Vg2, Vg3 и Vg4, Нижний: Vo-Vo (диоды Шоттки), Pdiss (активный мост), Pdiss (диоды Шоттки), Pdiss (активный мост) — Pdiss(диоды Шоттки)

Рис. 8. Rload = 40 Ом, Cout = 1000 Верхний: Vin, Vout и Vo, Средний: Vg1, Vg2, Vg3 и Vg4, Нижний: Vo-Vo (диоды Шоттки), Pdiss (активный мост), Pdiss (диоды Шоттки), Pdiss (активный мост) — Pdiss (диоды Шоттки)

Среднее уменьшение потерь мощности изменяется с 20% при большой нагрузке (5 Ом) до примерно 5% при малой нагрузке (40 Ом). Также стоит обратить внимание на то, что размер корпуса диодного моста, построенного из четырех диодов MBR10H100, занимает примерно 580 мм2 площади против только 120 мм2 в случае использования четырех транзисторных схем IRF6644. Таким образом, экономия места составляет приблизительно 80%.

Реализация ИС

В предлагаемом на рис. 9 контроллере на основе активного моста, благодаря технологии IR GENS, внутренние каскады, запускающие два полевых транзистора высокого плеча Q3 и Q4, могут быть реализованы двумя раздельными плавающими эпитаксиальными карманами внутри одной ИС.

Рис. 9. Предложение нового контроллера активного моста

Для предохранения двух внешних компонентов в схему также можно интегрировать два ограничивающих диода. Дополнительную RC-цепь, которая предназначена для защиты от паразитных переключений, можно заменить отдельными блоками регулировки времени выключения для каждой секции драйвера, чтобы оптимизировать время задержки разных полевых транзисторов с разными требованиями нагрузки. В дальнейшем лучшие полевые транзисторы IR, ограничивающие конденсаторы и ИС управления активным мостом можно интегрировать в одном корпусе, получив повышенную удельную плотность и обеспечив реализацию простого устройства. Такая схема становится высокоэффективной заменой существующим стандартным входным выпрямительным диодным мостам.

Назначение и устройство

В некоторых приборах дроссели устанавливаются для того, что бы пропускать импульсные токи определенного диапазона частот. Диапазон этот зависит от конструктивного решения дросселя, то есть от применяемого в катушке провода, его сечения, количества витков, наличия сердечника и материала, из которого он изготовлен.

Конструктивно дроссель представляет собой намотанный на сердечник изолированный провод. Сердечник может быть металлическим, набранным из изолированных пластин или ферритовым. Иногда дроссель может выполняться без сердечника. В этом случае используется керамический или пластмассовый каркас для провода.

Дроссельная заслонка присутствует в карбюраторе. Она регулирует подачу горючей смеси, представляя собой потенциометр. Чтобы проверить датчик дроссельной заслонки в автомобиле, определяют соответствие входного напряжения устройства положению заслонки.

В мультиметре выставляют режим прозвонки. Контакты разъема датчика соединяют со щупами мультиметра и создают видимость движения заслонки (пальцами). При этом проверяют, как реагирует датчик в крайних положениях заслонки. Должен идти чистый сигнал без хрипов.

Обозначение, применение и параметры диодов Шоттки

К многочисленному семейству полупроводниковых диодов названных по фамилиям учёных, которые открыли необычный эффект, можно добавить ещё один. Это диод Шоттки.

Немецкий физик Вальтер Шоттка открыл и изучил так называемый барьерный эффект возникающий при определённой технологии создания перехода металл-полупроводник.

Основной «фишкой» диода Шоттки является то, что в отличие от обычных диодов на основе p-n перехода, здесь используется переход металл-полупроводник, который ещё называют барьером Шоттки. Этот барьер, так же, как и полупроводниковый p-n переход, обладает свойством односторонней электропроводимости и рядом отличительных свойств.

В светильниках

В светильниках, предусмотренных для использования ламп дневного света, помимо самих ламп, применяются такие компоненты, как стартер и дроссель.

Стартер, как следует из названия, запускает процесс свечения в лампе, и далее в процессе не участвует. Дроссель выполняет функции стабилизатора тока и напряжения в течение всего периода свечения лампы.

Если дроссель неисправен, лампа не горит, или горит не устойчиво, свечение ее неоднородно по всей длине, внутри могут появляться области с более ярким свечением, движущиеся от одного электрода лампы к другому. Иногда можно заметить эффект мерцания света.

Отдел сбыта и маркетинга: т/ф,, [email protected]

Мощные диоды Шоттки 2ДШ2942 АЕЯР.432120.555ТУ

Область применения

Кремниевые эпитаксиально — планарные мощные выпрямительные диоды с барьером Шоттки 2ДШ2942 и диодные сборки на их основе с общим катодом, с общим анодом, по схеме удвоения (далее по тексту — «диоды и диодные сборки») в беспотенциальных герметичных металлокерамических корпусах с планарными гибкими плоскими выводами, предназначенные для работы в устройствах преобразовательной техники и электроприводах аппаратуры специального назначения.

Категория качества диодов и диодных сборок — «ВП».

Проверка в лампах

Проверку дросселя необходимо произвести, если наблюдается одно из вышеописанных явлений при работе лампы дневного света, а также, если замечено появление характерного запаха подгорающей изоляции, появление звуков, нехарактерных для работы прибора, а также в том случае, если лампа не включается.

До того, как проверить дроссель лампы, проверяются сама лампа и стартер.

Неисправность дросселя может заключаться в обрыве или перегорании провода катушки или межвитковом замыкании, вызванном пробоем или подгоранием изоляции.

Обе неисправности могут произойти либо вследствие длительного времени использования прибора, либо в результате какого-либо механического воздействия. Возможно перегорание провода катушки в результате подачи на нее тока большего, чем максимальный, на который рассчитан дроссель.

В случае обрыва или перегорания провода, можно выявить неисправность обычным тестером или мультиметром. В силу того, что дроссель пропускает постоянный ток, замкнув цепь тестера через катушку, по свечению контрольной лампы или его отсутствию можно понять, есть обрыв или нет.

Если при измерении мультиметром, сопротивление бесконечно, имеет место обрыв провода катушки.

Какое строение имеют источники светового потока

Дневное освещение является самым экономичным вариантом в плане освещения. При этом оно лучше всего подходит для глаз, благодаря чему служит отличной альтернативой всем существующим на сегодняшний день вариантам подсветки помещений. Для создания дневного света сегодня используются различие виды люминесцентных ламп. Такие лампы могут классифицироваться по оттенку и яркости излучаемого света:

  • теплый белый;
  • холодный белый;
  • желтоватый тон.

Дроссель

Но для повышения их безопасности во время работы принято использовать специальный прибор – дроссель. Им оснащены все лампы дневного света. Покупая светильник дневного света, обязательно поинтересуйтесь у продавца гарантией и другой сопроводительной документацией на приобретаемое изделие. Так вы точно купите качественный прибор для своих нужд. Что же представляет собой дроссель? Внешне дроссель имеет вид катушки индуктивности, у которой имеется специальный ферримагнитный сердечник. Это такая деталь, которая необходима для стабильной работы любой лампы при создании дневного света. По сути, дроссель входит в состав энергосберегающего источника света, установленного в светильнике. Частые поломки и способы их проверки мультимером указаны в таблице ниже:

При его неисправности или падении работоспособности на концах лампы появляются почернения. В задачи данной детали входит контроль напряжения, создаваемого на выходных контактах энергосберегающего источника света. Очень часто дроссель входит в состав люминесцентных ламп. Для того чтобы источник дневного света не погас, создается балласт. Он способен поддерживать в контактах осветительного прибора ток на требуемом уровне.

По существующим на сегодняшний день стандартам, такой балласт нужно подключать последовательно. Затем к нему параллельно подсоединяют стартер. Он ответственен за зажигание лампы.

Такое строение и способ подключения играет важную роль в работоспособности лампы, используемой для создания дневного света в помещении. Поэтому если имеются неисправности, то в первую очередь нужно проверить дроссель. О том, как это сделать мы расскажем несколько ниже. Чтобы понять, почему лампы дневного света перестали работать, необходимо быть знакомым с их конструкцией, а также принципом работы. Это нужно для того, чтобы по косвенным признакам проверить их работоспособность и определиться с вариантами починки. На данный момент в продаже существует несколько типов люминесцентных ламп. Но все они имеют одинаковое строение.

Проверка межвиткового замыкания

В случае межвиткового замыкания, проверка тестером результата не даст. В этом случае необходимо знать, как проверять дроссель при помощи мультиметра.

Межвитковое замыкание имеет место при непосредственном гальваническом контакте двух витков или при контакте витков с металлическим сердечником. Очевидно, что в этом случае сопротивление катушки уменьшается.

Возможен редкий случай, когда измерение сопротивления катушки не даст достоверной картины ее состояния. Такое может случиться при обрыве и межвитковом замыкании одновременно.

В этом случае межвитковое замыкание может оказаться параллельным обрыву, и несколько витков просто не будут участвовать в измерении. Исправный, казалось бы, дроссель будет работать некорректно.

Для проверки катушки на наличие межвиткового замыкания, аналоговый мультиметр в режиме миллиамперметра необходимо использовать в составе прибора, собранного на двух транзисторах.

Схема прибора приведена на рисунке.

Сам прибор представляет собой генератор низкой частоты. При сборке схемы используются любые транзисторы из линейки МП39-МП42 (коэффициент усиления 40-50).

Диоды можно использовать типа Д1 или Д2 с любым индексом. Резисторы применяются любого типа, рассчитанные на мощность не менее 0,12 Вт. Питание прибора осуществляется от источника постоянного тока, напряжением 7-9 В.

Строение люминесцентной лампы

Такие источники дневного света в своей конструкции обязательно содержат стеклянную колбу различной формы. В ней находятся спиральные электроды и инертный газ (пары ртути).Сверху колба покрыта специальным слоем из люминофоров.

Будет интересно➡ Как проверить трансформатор при помощи мультиметра

Принцип работы лампы таков:

  • при поступлении электрического тока на электроды (спирали) они нагреваются;
  • в результате нагревания спиралей происходит зажигание газа;
  • под действием него начинает светиться люминофор.

Из-за того, что электроды имеют ограниченные размеры, имеющегося в сети напряжения недостаточно для розжига электродов. Вот для этого и используют дроссель. А чтобы предотвратить чрезмерный перегрев спирали в лампы устанавливают стартер. Он после зажигания газа запускает процессы, приводящие к отключению накала электродов.

Последовательность действия

Порядок проверки следующий:

  1. включается тумблер Вк. При этом стрелка мультиметра должна отклониться до середины шкалы;
  2. в зависимости от индуктивности катушки, устанавливается положение движка переменного резистора R5. Левое положение соответствует меньшей, а правое – большей индуктивности. При проверке катушек с индуктивностью менее 15 мГн, необходимо дополнительно нажать кнопку Кн2;
  3. к клеммам Lx подключаются выводы дросселя и замыкается кнопкой контакт Кн1. При этом, если в обмотке нет витков, короткозамкнутых между собой, стрелка мультиметра должна отклониться в сторону больших значений или же незначительно отклониться в сторону меньших. Если в обмотке есть хоть одно замыкание между витками, стрелка возвращается на нуль.

Иногда причиной неисправности катушки может стать разрушившийся или поврежденный сердечник. Материал, из которого выполнен сердечник, его размер и положение относительно катушки, влияют на индуктивность.

Проверка индуктивности

Наличие в арсенале мультиметра такой полезной функции, как измерение индуктивности катушек, будет полезным для проверки соответствия дросселя характеристикам, заявленным в справочной литературе. Функция присутствует только в некоторых моделях цифровых мультиметров.

Чтобы воспользоваться этой функцией, необходимо настроить мультиметр на измерение индуктивности. Контакты щупов присоединяются к выводам катушки. При первом измерении мультиметр устанавливается в наибольший диапазон измерений, и потом диапазон уменьшается для получения измерения достаточной точности.

При проведении всех измерений важно не допускать касания руками контактов, на которых измеряются те или иные параметры, иначе проводимость человеческого тела может изменить показания прибора.

Выбор типа сборки

Использование выпрямительного моста вместо четырех диодов не только существенно упрощает сборку, но и делает конструкцию более компактной. Принцип выбора типа сборки тот же — по напряжению, току и частоте. Чтобы определить, подойдет ли, к примеру, сборка КЦ402Г, фото и схема которого приведены выше, нужно обратиться к справочнику. В нём указаны следующие характеристики моста:

  • максимальное обратное напряжение диодов — 300 В;
  • прямой ток всей сборки — 1 А;
  • граничная частота — 5 кГц.

Мостик подходит, но микросборка будет работать на пределе своих возможностей по току. Для обеспечения надежности схемы лучше использовать более мощный прибор. Например, мост КЦ409А на ток 3 А или КЦ409И на 6 А.

Как проверить катушку зажигания

Проверить катушку зажигания автомобиля можно разными способами, но мы рассмотрим самые простые, которые под силу даже начинающим автолюбителям.

В нашем с Вами мире на данный момент используется три основных вида систем зажигания:

  1. Классическая система с разносчиком искры (трамблёр). Эта система морально устарела и уже давно не ставится на новые автомобили. Но на старых авто она ещё встречается часто
  2. Double ignition system (DIS) — эта система не имеет разносчика искры и за счёт этого получила широкое распространение. В народе она получила название — система с холостой искрой. Всё дело в том, что к одной катушке подключено две свечи и, соответственно, искровой пробой происходит одновременно сразу в двух цилиндрах — в одном на такте сжатия, а во втором на такте выпуска (холостая искра). Именно данная система установлена на Шевроле Лачетти
  3. Coil On Plug (COP) — дословный перевод — «катушка на свече». Название говорит само за себя. То есть, на каждую свечу одета собственная катушка. Это самая современная на данный момент система зажигания.

Системы зажигания постоянно модернизируются и усовершенствуются, но одно остаётся неизменным — применение принципа индуктивности для преобразования низкого напряжения в высокое. Другими словами — все эти системы объединяет использование катушек зажигания. Они могут отличаться по виду, мощности, напряжению и так далее, но принцип работы неизменен. Это значит, что и методы проверки практически одинаковы.

Как проверить катушку зажигания

Катушку зажигания можно проверить несколькими способами:

  • заменой на заведомо исправную — это самый точный метод проверки
  • осциллографом мотор-тестера
  • омметром
  • «на искру»

Допустим, мы обычные автолюбители и у нас нет в запасе рабочих катушек и, уж тем более, мотор-тестера. Остаётся два последних варианта.

Но вариант «на искру» также требует некоторого оборудования, а именно — высоковольтного разрядника

Банальным выкручиванием свечи и проверкой искры абсолютно ничего не выяснишь. Искра будет и при исправной катушке и при уставшей. А вот при установке свечи обратно в цилиндр во втором случае искры уже не будет. Почему?

Потому что на напряжение пробоя влияет несколько факторов и самый главный из них — давление! Чем выше давление, тем больше требуется напряжение пробоя на одном и том же искровом промежутке.

То есть, чтобы пробить зазор 1мм в свече зажигания при атмосферном давлении (выкрученной свече) требуется гораздо меньшее напряжение, чем при большем давлении (вкрученной свече), так как давление в цилиндрах при работающем двигателе гораздо больше атмосферного.

А разрядник даёт возможность изменять расстояние между своими электродами в широких пределах. Это позволяет выставить зазор для проверки в несколько миллиметров. Но эти несколько миллиметров требуют такого же напряжения пробоя, как и 1мм на свече, ввернутой в цилиндр при работающем двигателе.

Как проверить катушку зажигания мультиметром

Остаётся самый простой способ, как проверить катушку зажигания — мультиметром. Этот прибор уже есть практически в каждом доме, поэтому это самый доступный способ проверки.

Суть проверки заключается в измерении сопротивления первичной и вторичной обмоток. Алгоритм действий одинаков для всех видов катушек. Отличия есть в сопротивлении первичной обмотки новых катушек по отношению к катушкам старого образца. Новые катушки имеют меньшее сопротивление первичной обмотки и за счёт этого удаётся получить более высокую энергию. В старых — около 3-4 Ом, а в новых — около 1-2 Ом.

Первым делом проверяем вторичную обмотку. Для этого необходимо установить мультиметр в режим измерения сопротивления до 20 кОм и подключить щупы к высоковольтным выводам катушки зажигания

Сопротивление должно быть около 13-14 кОм

Примечание! Сопротивление вторичной обмотки катушки зажигания имеет допуски. При температуре окружающей среды 21 градус сопротивление вторичной обмотки может составлять 11.5 кОм — 14 кОм. Также учитывайте температуру, погрешность Вашего омметра и сопротивление самих щупов!

То же самое делаем и со второй катушкой

Затем отключаем низковольтный разъём от катушки зажигания

Переводим мультиметр в режим измерения сопротивления до 200 Ом и подключаем щупы к низковольтным выводам катушки. Сопротивление должно быть около 1 -2 Ома при температуре окружающего воздуха 21 градус по Цельсию.

Так же проверяем вторую катушку зажигания.

На этом проверку можно закончить, но лучше ещё, конечно, снять катушки зажигания, очистить их и визуально осмотреть на наличие следов пробоя или трещин.

Проверка деталей цифровым мультиметром.

Главным отличием цифрового прибора от аналогового является то, что результаты измерения отображаются на жидкокристаллическом дисплее. К тому же цифровые мультиметры обладают более высокой точностью и отличаются простотой использования, т.к. не приходится разбираться во всех тонкостях градирования измерительной шкалы, как со стрелочными измерительными приборами. Цифровой тестер (см. Рис. 1), как и аналоговый, имеет два щупа – черный и красный, и от двух до четырех гнезд. Черный вывод является общим (масса). Гнездо для общего вывода помечается как СОМ или просто “-” (минус), а сам вывод на конце часто имеет так называемый пкрокодильчикп, для того, чтобы при измерении можно было зацепить его за массу электронной схемы. Красный вывод вставляется в гнездо, помеченное символами напряжения – “V” или “+” (плюс). Если Ваш прибор содержит более двух гнезд, например, как на Рис. 1, красный щуп вставляется в гнездо “VQmA”. Эта надпись говорит о том, что Вы можете измерять напряжение, сопротивление и небольшой ток – в миллиамперах. Гнездо, расположение немного выше, с маркировкой 10ADC говорит о том, что Вы можете измерять большой постоянный ток, но не выше 10А. Переключатель мультиметра позволяет выбрать один из нескольких пределов для измерений. Чтобы измерить постоянное напряжение выбираем режим DCV1, если переменное ACV, подключаем щупы и смотрим результат. При этом на шкале переключателя вы должны выбрать большее напряжение, чем измеряемое. Например, Вам необходимо измерить напряжение в электрической розетки. В вашем приборе шкала ACV состоит из двух параметров: 200 и 750 (это вольты). Значит, нужно установить стрелочку переключателя на параметр 750 и можно смело измерять напряжение.

1 DC – постоянный ток (Direct Current), AC – переменный ток (Alternating Current).

Для того, чтобы мультиметр не вышел из строя при измерениях напряжения или тока, особенно если их значение неизвестно, переключатель желательно установить на максимально возможный предел измерений, и только если показание при этом слишком мало, для получения более точного результата, переключайте мультиметр на предел ниже текущего.

Как проверить соленоид

Соленоид представляет собой спираль из проводника, в которой при прохождении электрического тока возникает практически линейное (с прямыми силовыми линиями) магнитное поле. Поэтому соленоид может использоваться для переключения различных клапанов и датчиков дистанционно. Чаще всего это делают в автомобилях; соответственно, при выходе из строя датчика или клапана первым делом проверяйте соленоид.

Как проверить соленоид

Вам понадобится

  • — набор инструментов;
  • — тестер;
  • — воздушный компрессор.

Инструкция

Чтобы проверить соленоид, возьмите тестер и переключите его в режим работы омметра. С помощью технической документации на автомобиль выясните, где установлен соленоид между компьютером автомобиля и «массой» или между блоком управления и источником тока. Еще один важный момент: какое нормальное состояние клапана соленоида — открытое или закрытое.

С помощью омметра измерьте его электрическое сопротивление, присоединив его к контактам соленоида. Его сопротивление в холодном и горячем состоянии найдите в инструкции по эксплуатации автомобиля. Обязательно проверьте контур соленоида на короткое замыкание. Для этого каждый из контактов замкните на корпус автомобиля через омметр. Если есть возможность, разберите и промойте соленоид в бензине для того, чтобы избавиться от частиц, скопившихся в ходах и клапане. Если же он не разбирается, просто замените его.

Поскольку в соленоиде генерируется достаточно мощное магнитное поле, в нем могут скапливаться микрочастицы металла, которые забивают каналы и клапан. В результате подвижные части не могут нормально двигаться. Для проверки каналов соленоида и его гидравлического клапана используйте компрессор со сжатым воздухом. При этом обязательно проверьте по документации, закрыт или открыт клапан в нормальном состоянии.

Для закрытого в нормальном виде соленоида проведите простой тест. Отключите его от питания. Затем направьте в него струю воздуха под давлением. Она не должна проходить через его выходной канал. Подайте на соленоид напряжение. Воздух должен проходить через выходной канал. В этом случае соленоид можно считать исправным.

Для нормально открытого соленоида ситуация обратная. При отключении его от питания он должен пропускать воздух под давлением, а при включении тока должен запирать канал, и воздух по нему проходить не будет.

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Обрыв обмотки электрической катушки. Как проверить катушку и найти обрывКогда обрывается электрическая обмотка, по которой протекает ток, то или иное устройство обычно выходит из строя (так как любые обмотки как правило играют важную функциональную роль в работе электрических приборов). Давайте с Вами рассмотрим данную проблему более тщательно, выяснив для себя важные моменты. Итак, в большинстве случаев обмотка из медного провода используется в трансформаторах, электродвигателях и электрогенераторах, клапанах, электромагнитах, реле, контакторах, катушках индуктивности и т.д.

Наиболее значимым физическим эффектом, которым обладают электрические катушки является индукция электромагнитных полей. Именно когда электрический ток протекает через обмотку провода вокруг неё образуется достаточно интенсивное электромагнитное поле, что даёт возможность влиять, как на механическое движение, так и на генерацию электродвижущей силы (наводимой на другой обмотке, находящаяся рядом). Следовательно при обрыве обмотки обрывается контакт и движение электрического тока прекращается, в результате чего прекращаются процессы взаимодействия с электромагнитными полями.

что делать если оборвалась обмотка катушки, как проверить на обрывКак можно вычислить обрыв обмотки? Проверив её на целостность, предварительно прозвонив её тестером. Но не всё так просто. Одно дело, когда электрическая обмотка просто оборвалась в результате отгорания или механического повреждения. И другое дело случаи, когда устройство, содержащее обмотку, подвергается периодическому перегреву. В результате чего нарушается качество изоляционного покрова обмотки (происходит постепенное разрушение изоляционного лака). Это ведёт к появлению короткозамкнутых витков, что способствует ещё большему нагреву катушки с последующим выходом её из строя. То есть, происходит отгорание провода (или вовсе выгорание всей обмотки) и обрыв катушки.

Если электрическая катушка с обмоткой находится на устройстве, для проверки её необходимо выпаять (что бы исключить прозвонку через другие электрические цепи прибора). И только когда обмотка электрически не связана с другими цепями её можно прозванивать тестером на внутреннее сопротивление. Если оно есть (при отсутствии короткозамкнутых витков), значит с Вашей обмоткой всё нормально, она рабочая. Если же тестер, прозвонка не показывает сопротивление, величина которого зависит от длины провода обмотки, её сечения, материала (хотя в основном используется медь) значит Ваша обмотка имеет обрыв.

как найти обрыв обмотки катушки и перемотать трансформаторИсходя из практики достаточно большое количество обрывов обмоток связано со следующими причинами — это плохая пайка концов обмотки к клеммным выводам устройства, перегорание провода в наиболее уязвимых местах (места частого перегиба, ранее механически повреждённого), случайное механическое повреждение при неправильной эксплуатации, профилактических работах, перегрев устройства с обмоткой при коротких замыканиях и токовых перегрузках.

Чаще всего обрыв обмотки находиться в месте самих выводов этой самой обмотки, месте их спая с проводом, удлиняющих эти самые выводы. Такие обрывы легко находить и устранять, они видны не вооружённым взглядом. Их просто обратно спаивают и изолируют при необходимости. Гораздо хуже дело обстоит, когда этот самый обрыв обмотки произошёл внутри самой обмотки. Тут уж нужно будет подумать, что будет проще, либо размотать катушку до места обрыва, его устранить и намотать провод обратно, либо просто заменить обмотку на новую (перемотав её), либо же вовсе заменить всё устройство, содержащее эту самую обмотку.

P.S. В большинстве случаев проверка электрической обмотки катушки на обрыв сводиться к простой проверке тестером на наличие определённого сопротивления этой самой катушки. Если сопротивление показывает тестер, значит всё нормально. Если же его нет, значит обрыв. Но значение этого самого сопротивления стоит учитывать, так как если на тестере выставить не верный предел измерения, то можно получить не верное измерение. В этом моменте будьте повнимательнее.

Автомобили admin26.02.2020

Клапан с электромагнитным приводом — это современный вид запорной арматуры. Они позволяют на расстоянии управлять потоками жидкости или газа в трубопроводных системах. Такие затворы хорошо встраиваются в автоматизированные системы управления технологическими процессами, позволяют экономить дефицитные человеческие ресурсы и делают работу предприятий более безопасной. Существует большое количество различных видов клапанов для разных сред, различаются они и по своему устройству и назначению.

Назначение и применение электромагнитных клапанов

Электромагнитный клапан предназначен для управления потоками жидких и газообразных продуктов на расстоянии. Он может быть запорным и регулирующим. Управление при этом может осуществляться как вручную, так и с помощью систем автоматики. По своей конструкции и назначению электромагнитный затвор весьма похож на обычный, с той разницей, что в движение запорный элемент приводится в движение не мускульной силой, а соленоидом, электромагнитом с подвижным сердечником. При подаче напряжения на катушку индуктивности соленоида, она, в зависимости от полярности, втягивает или выталкивает сердечник, соединенный со штоком клапана.

Такие запорные и регулирующие устройства используются как в сложных промышленных установках, так и в домашних системах отопления, водоснабжения, в бытовой технике. Применяются они и в транспортных средствах, работающих на жидком топливе.

Способ первый: тест «на искру»

Этот способ не требует особого оборудования, его можно провести буквально «на ходу». Недостатки — трудоемкость и неточность, потому что причиной выявленных нарушений может быть не обязательно катушка.

Важно: соблюдайте технику безопасности, не прикасайтесь к деталям под напряжением.

  1. Заглушите мотор, дайте ему остыть. Достаньте ключ из зажигания. Натяните на руки перчатки и защитите глаза очками.
  2. Откройте капот, отыщите катушки.

  1. Визуально оцените целостность изоляции высоковольтной проводки. Если с ней все в порядке, снимите наконечник со свечи первого цилиндра и подсоедините к подготовленной заранее исправной свече зажигания.
  2. Поверните ключ в зажигании, запустив стартером все электросистемы «Рено».
  • если катушка исправна, между электродами свечи проскочит ярко-голубая искра;
  • если искра слабая и оранжевого цвета, это означает, что напряжение на свечу подается, но оно недостаточное. Вероятны проблемы с проводкой, плохой контакт, повреждение катушки;
  • если искры нет вообще, катушка неисправна.
  1. Повторите тест с искрой для всех индивидуальных катушек.

Важно: если у вас в наличии нет приготовленной исправной свечи, можно провести тест с искрой, выкрутив любую свечу зажигания из головки блока цилиндров.

Используйте специальную насадку на ключ, следите за тем, чтобы пыль и мусор не попали в отверстие свечи в ГБЦ. Затем, держа свечу плоскогубцами с изолированными ручками, прикоснитесь резьбовым участком к голому металлу (мотору, например). И выполните пункт 4-5.

Устройство клапана

Соленоидный клапан по составу основных деталей и узлов во многом совпадает с обычным устройством с ручным управлением:

  • Корпус с подводящим и отводящим патрубком.
  • Рабочая камера с седлом.
  • Тарельчатый, шаровой или лепестковый запорный элемент.
  • Возвратная пружина.
  • Шток, соединенный с запорным элементом и сердечником соленоида
  • Соленоид.

Корпус магнитного клапана изготавливается из металлических немагнитных сплавов или прочных пластиков. Высокая герметичность корпуса позволяет применять клапан в различных средах, в том числе и активных. Соленоидные клапана для воды в качестве уплотняющих прокладок используют резину, для более активных сред выбирают фторопласт. Открывать и закрывать клапан соленоид за время службы должен тысячи или даже десятки тысяч раз, поэтому для обмоток берут самые высококачественные медные провода, покрытые изолирующей эмалью.

Управление электромагнитным клапаном осуществляется по проводам, для их присоединения на корпусе снаружи предусмотрены контактные группы.

Устройство должно быть устойчивым к воздействию внешних электромагнитных полей, шумов и вибраций.

Существуют и другие типы электромеханических приводов, такие, как электродвигатель с редуктором, пневматические или гидравлические.

Видео

Из всего вышеизложенного можно сделать вывод о том, что наличие в доме мультиметра с функцией прозвонки – объективная необходимость для любого домашнего мастера. С таким прибором в большинстве случаев можно будет быстро устранить мелкие неисправности, не обращаясь за помощью к специалистам.

Читать также: Почему степлер гнет скобы буквой м

Как проверить кнопку мультиметром

Если стоит задача проверить электрическую цепь на отсутствие разрывов (утечек), то необходимо ознакомиться с тем, как прозвонить провода мультиметром. Специализированный измерительный прибор незаменим при тестировании проводки. И даже если вы не профессиональный электрик, разобравшись с основными правилами безопасного использования мультиметра, вы сможете без труда определить проблемные участки в домашней электросети.

Принцип работы электромагнитных систем

Принцип работы электромагнитного запорного клапана основан на физическом явлении электромагнитной индукции. При протекании тока по катушке индуктивности внутри нее возникает магнитное поле, воздействующее на сердечник из магнитных материалов силой, приложенной в продольном направлении. Эта сила, в зависимости от полярности приложенного напряжения, пытается втянуть сердечник внутрь катушки либо вытолкнуть его. При этом происходит открытие либо закрытие затворного элемента.

Катушки соленоидных клапанов могут работать как на постоянном токе напряжением от 5 до 36 вольт, так и на переменном токе напряжением 220 В.

Устройства с низким управляющим напряжением обладают небольшой мощностью и ограниченным усилием, передаваемым на запорный элемент. Это позволяет использовать для управления ими низковольтные полупроводниковые схемы. Применяются такие устройства в системах низкого напора рабочей среды, на трубопроводах малых диаметров.

Приводы, работающие на переменном токе, развивают гораздо большие усилия и могут применяться на магистральных трубопроводах высокого давления и больших диаметров.

Почему в работе катушки возникают перебои

Когда появляется вопрос, как самому проверить катушки зажигания, важно знать, что эти элементы весьма надежны, редко выходят из строя преждевременно. Большая часть проблем возникает из-за естественного износа узла, его составляющих. Происходит обрыв обмотки, повреждается изоляция, появляются механические изъяны.

Распространенные дефекты:

  • Механические неисправности – случаются из-за существенных вибраций, проникновения масла, разрушающего корпус, изоляцию;
  • Перегрев – эта проблема характерна для индивидуальных моделей, неисправность наступает при длительной работе зажигания без запуска мотора, возможны проблемы из-за неполадок системы охлаждения (в любом случае возникает опасность короткого замыкания);
  • Воздействие агрессивной среды – влаги, пыли, реагентов сопровождается повреждением контактного соединения;
  • Выбор неподходящих свечей – приводит к вероятности пробоя изолятора, появляются обратные газы, наносящие урон резиновому наконечнику.

Оценивая работоспособность зажигания, обращают внимание и на провода, которые могут быть пробиты.

О разновидностях изделий

Классификация изделий проводится по нескольким параметрам.

Исходя из положения запорного элемента в отсутствие напряжения на катушке различают:

  • Нормально открытые, или НО. Проход для жидкости или газа открыт, а при подаче напряжения- он закрывается.
  • Нормально закрытые, или НЗ. Проход для среды перекрыт, а при подаче напряжения он открывается.

Некоторые модели выпускаются универсальными, а нормально положение запорного элемента настраивается при установке и подключению к управляющей сети. Такие переключаемые устройства называют бистабильными.

В зависимости от рабочей среды запорную арматуру выпускают для:

  • Воздуха.
  • Воды.
  • Пара.
  • Активных сред.
  • Горюче-смазочных материалов.

Приборы для работы в радиоактивных средах отличаются специальным подбором материалов с повышенной радиационной стойкостью. Вакуумный электромагнитный клапан должен обеспечивать особо высокую герметичность

Исходя из характеристик внешней среды, исполнение прибора может быть:

  • Обычное
  • Для влажных помещений.
  • Термостойкие (для высоких температур).
  • Морозостойкие (для экстремально низких температур).
  • Взрывозащищенное. Такие устройства не должны искрить при включении либо выключении. Для этого в них применяются специальные конструктивные решения и материалы.

По типу питающего напряжения катушки делятся на

  • Переменного тока, высокого напряжения. Развивают большие усилия, используются на магистральных трубопроводах высокого давления и больших диаметров.
  • Постоянного тока, низкого напряжения. Применяются на трубах небольшого сечения и низкого напора.

Есть отдельный класс электромагнитных отсечных клапанов высокого давления. Их называют отсечными. Они предназначены для моментального перекрытия трубопроводов или герметизации емкостей в случае возникновения нештатных или аварийных ситуаций.

Как проверить мультиметром полевой транзистор

Полевые транзисторы проявляют высокую чувствительность к статическому электричеству, поэтому предварительно требуется организация заземления. Перед тем как приступить к проверке полевого транзистора, следует определить его цоколевку. На импортных приборах обычно наносятся метки, которые определяют выводы устройства.

Будет интересно➡ Как проверить диодный мост мультиметром?

Буквой S обозначается исток прибора, буква D соответствует стоку, а буква G – затвор. Если цоколевка отсутствует, тогда необходимо воспользоваться документацией к прибору. Перед проверкой исправного состояния транзистора, стоит учесть, что современные радиодетали имеют дополнительный диод, расположенный между истоком и стоком, который обязательно нанесен на схему прибора. Полярность диода полностью зависит от вида транзистора.

Обезопасить себя от накопления статических зарядов можно при помощи антистатического заземляющего браслета, который надевается на руку, или прикоснуться рукой к батарее. Основная задача, как проверить мультиметром полевой транзистор, не выпаивая его из платы, состоит из следующих действий:

  1. Необходимо снять с транзистора статическое электричество.
  2. Переключить измерительный прибор в режим проверки полупроводников.
  3. Подключить красный щуп к разъему прибора «+», а черный «-».
  4. Коснуться красным проводом истока, а черным стока транзистора. Если устройство находится в рабочем состоянии на дисплее измерительного прибора отобразиться напряжение 0,5-0,7 В.
  5. Черный щуп подключить к истоку транзистора, а красный к стоку. На экране должна отобразиться бесконечность, что свидетельствует об исправном состоянии прибора.
  6. Открыть транзистор, подключив красный щуп к затвору, а черный – к истоку.
  7. Не меняя положение черного провода, присоединить красный щуп к стоку. Если транзистор исправен, тогда тестер покажет напряжение в диапазоне 0-800 мВ.
  8. Изменив полярность проводов, показания напряжения должны остаться неизменными.
  9. Выполнить закрытие транзистора, подключив черный щуп к затвору, а красный – к истоку транзистора.

Говорить об исправном состоянии транзистора можно исходя из того, как он при помощи постоянного напряжения с тестера имеет возможность открываться и закрываться. В связи с тем, что полевой транзистор обладает большой входной емкостью, для ее разрядки потребуется некоторое время.

Эта характеристика имеет значение, когда транзистор вначале открывается с помощью создаваемого тестером напряжения (см. п. 6), и на протяжении небольшого количества времени проводятся измерения. Проверка мультиметром рабочего состояния р-канального полевого транзистора осуществляется таким же методом, как и n-канального.

Только начинать измерения следует, подключив красный щуп к минусу, а черный – к плюсу, т. е. изменить полярность присоединения проводов тестера на обратную. Исправность любого транзистора, независимо от типа устройства, можно проверить с помощью простого мультиметра.

Для этого следует четко знать тип элемента и определить маркировку его выводов. Далее, в режиме прозвонки диодов или измерения сопротивления узнать прямое и обратное сопротивление его переходов. Исходя из полученных результатов, судить об исправном состоянии транзистора.

Область использования

Применение электромагнитных клапанов осуществляется в самых разных областях человеческой деятельности, везде, где возникает необходимость управлять потоками жидкостей и газов дистанционно. Сюда входит:

  • Бытовые системы отопления.
  • Системы водоснабжения и водоподготовки.
  • Технологические установки.
  • Трубопроводный транспорт.
  • Генерация и распределение тепла.
  • Бытовые приборы.
  • Канализация.
  • Орошение.
  • Транспортные средства.

Использование электромагнитных клапанов на транспорте понемногу снижается, поскольку все больше видов транспортных средств переходят на электрические источники энергии и отказываются от жидкого топлива и гидравлики, заменяя их на более надежные электрические приводы. Сходные перспективы просматриваются и в системах отопления. Но в водоснабжении, канализации и других отраслях роль электромагнитных затворов будет только возрастать.

Принцип прозвонки и определения сопротивления

Если внимательно рассмотреть мультиметр, то можно заметить, что режим прозвонки (проверки диодов) находиться в зоне измерения сопротивления. Простыми словами, прозвонка объединяет в себе определение сопротивления проводника, анализ полученных данных и вывод результата с дополнительной подачей звукового сигнала.

Чтобы разобраться в принципе прозвонки, достаточно для начала знать закон Ома. Он гласит: «сила тока в проводнике прямо пропорциональна напряжению на его концах (разности потенциалов) и обратно пропорциональна сопротивлению этого проводника». Исходя из данного правила, сопротивление R = U ⁄ I, где I – сил тока, U – напряжение в сети.

Зная, как определяется сопротивление, остается понять, откуда берется сила тока и напряжение при замерах (по технике безопасности проверяемая цепь должна быть предварительно обесточена). Все просто. В мультиметре имеется источник питания, с помощью которого создается напряжение и подается ток. Сопоставляя исходные данные с величиной потерь, вызванных подключением к измеряемому резистору, проводу или лампочке, вычисляется конечный результат (единица измерения — Ом).

Преимущества электромагнитных клапанов для воды

Главным преимуществом устройства является возможность удаленного и быстрого регулирования потоков рабочей среды. Без электромагнитных затворов становится невозможной работа сложных технологических установок и простых бытовых приборов, таких, как кофеварка и стиральная машина.

Кроме того, электропривод позволяет:

  • Подключать соленоидный клапан к централизованной и автоматизированной системе управления. Это многократно повышает точность и оперативность регулировок параметров по сравнению с ручным управлением.
  • Снижать трудозатраты на управление технологическими процессами.
  • Повышать безопасность производства и исключать воздействие на оператора вредных факторов производственной среды.
  • Повышать эффективность работы бытовых приборов и производственных установок за счет точного и быстрого управления потоками рабочих сред и их параметров.

Важным достоинством соленоидного привода по сравнению с электромотором и редуктором является отсутствие зубчатых и червячных передач, исключительная простота устройства и минимум подвижных частей.

Это обеспечивает высокую надежность оборудования, минимальный износ и долгий срок его службы.

Недостатком данного типа устройств являет невозможность плавной регулировки степени открытия затвора. Обеспечивается только два положения: «открыто» и «закрыто».

Как работает катушка зажигания

Представляет собой соединение двух обмоток. Одна состоит из малого числа витков утолщенной проволоки, первичная обмотка, принимающая низковольтные электрические импульсы (12В). Вторичная густо обвита проволокой малого сечения, образующей высоковольтный ток ( до 35000В). Посредством высоковольтной проводки, этот ток подается на трамблер, затем на свечные электроды. Там образуется дугообразный разряд и появление искры.

В первой обмотке электрический ток носит постоянный характер. В мертвой позиции поршня, прерыватель размыкает цепь в обмотке №1. В соседних (вторичных) витках индуцируется ток (повышенной вольтности), и передается на свечные электроды.

Все время, пока прерыватель в замкнут (двигатель на малых оборотах), по первичной катушке проходит электричество, впустую его нагревая. Поэтому, в цепь катушки включают резистор, который уменьшает силу тока (за счет увеличения сопротивления). Когда прерыватель в разомкнутом положении (на повышенных оборотах), нагревание совсем незначительное. При первом запуске мотора, для увеличения энергии искры свечей, резистор блокируется прерывателем (уменьшая сопротивление, тем самым, увеличивая силу тока).

Кстати, когда нужно завести двигатель, когда аккумулятор «сел», нужно просто заблокировать резистор, проволочной перемычкой.

Установка электромагнитного клапана для воды своими руками

Прежде чем приступать к установке, необходимо определить тип подключения. Наиболее часто применяемыми являются:

  • Резьбовое. Входной и выходной патрубки снабжены внешней либо внутренней резьбой, через соответствующие фитинги арматура встраивается в разрыв трубопровода. Наиболее удобное для самостоятельной установки, лучше выбрать подключение такого типа.
  • Фланцевое. Патрубки оборудованы фланцами, на концах труб также должны быть фланцы соответствующего типоразмера, они стягиваются между собой болтами. Обеспечивают высокое давление и интенсивность потока, чаще применяются на магистралях высокого и среднего давления.

До начала монтажа устройства следует выполнить ряд подготовительных операций. Трубы должны быть размечены, обрезаны под размер и зачищены. Место для установки электромагнитного устройства должно давать свободный доступ к устройству для его монтажа, обслуживания и ремонта. Опытные мастера сформулировали также несколько рекомендаций:

  • Все работы по установке или снятию прибора можно проводить только в отключенном от сети виде.
  • Трубопроводную систему необходимо дополнить фильтром механической очистки. Это предотвратит загрязнение и повреждение деталей посторонними включениями, такими ка песок, чешуйки ржавчины и известковые отложения.
  • Корпус устройства не должен принимать на себя вес участка трубопровода.
  • Следует подключать устройство в соответствии с нанесенными на корпусе стрелками. Они указывают направление потока.
  • При уличной установке следует защитить клапан от воздействия природных явлений. Обычно бывает достаточно водонепроницаемого кожуха. При работе в условиях низких температур нужно обеспечить подогрев кожуха.
  • Резьбовые соединения нужно обязательно уплотнять лентой ФУМ или сантехнической нитью.
  • Кабель для подключения к управляющей системе следует выбирать медный. Он должен иметь достаточное поперечное сечение не менее 2 мм 2 .

Подбор конкретной модели осуществляется на основе расчетов параметров трубопроводной системы.

Следует учитывать напор, сечение труб, необходимую скорость срабатывания и характеристики управляемой среды.

Правила безопасной прозвонки с использованием мультиметра

Как проверить кнопку мультиметром

Работа с электричеством не допускает непрофессионализма, поэтому сложился определённый перечень правил, которые позволяют сделать её максимально точной, быстрой и безопасной.

  1. Удобнее всего при прозвонке использовать на концах измерительных проводов специальные наконечники, которые получили более распространённое название «крокодилы». Они позволят сделать контакт устойчивым и освободят руки при проведении измерений.
  2. При прозвонке всегда проверяемая цепь должна быть предварительно обесточена (необходимо удалить даже слаботочные батарейки). Если в цепи стоят конденсаторы, они должны быть разряжены закорачиванием. В противном случае при проведении работ прибор просто сгорит.
  3. Перед тем как проверить целостность проводника большой длины при проведении измерений важно не прикасаться руками к его оголённым концам. Это связано с тем, что полученные в результате показания могут быть некорректны.

Читать также: Вытяжные губки для заклепочника

При прозвонке многожильного кабеля необходимо с обоих концов разделить и зачистить все имеющиеся жилы. После этого нужно проверить цепь на наличие в ней коротких замыканий: для этого на каждой жиле поочерёдно закрепляется «крокодил», ко всем оставшимся прикасаются другим измерительным концом во всех возможных комбинациях.

Как проверить кнопку мультиметром

В данном случае звуковой сигнал будет означать наличие между проверяемыми жилами короткого замыкания. Это может не иметь практического значения для многожильных кабелей малого сечения, работающих в слаботочных сетях, но при работе с высоким напряжением это принципиально важно.

Как проверить кнопку мультиметром

Чтобы определить целостность жил выполняется та же операция, только на одном из концов кабеля все зачищенные жилы скручиваются вместе. При поиске обрыва важно учитывать, что отсутствие на каком-либо из концов звукового сигнала будет говорить о нарушении целостности проводника.

Проверка клапана

Проверять клапан карбюратора следует на следующих режимах:

  • На холостом ходу. После запуска доводят обороты до 2100 и вслушиваются в работу карбюратора. Должен быть слышен резкий характерный звук, означающий закрытие затвора. Далее плавно снижают обороты до значения в 1900, должен быть слышен щелчок открывания.
  • Торможение двигателем. Нужно сбросить газ, не выключая передачу. Исправный клапан в этом случае не сработает, даже если обороты снизились до 1900. Если слышен щелчок – устройство неисправно.
  • После остановки двигателя. Если при выключенном зажигании в цилиндрах продолжаются самопроизвольные вспышки детонирующей рабочей смеси, двигатель дергается и вибрирует – значит, клапан не перекрывает подачу горючего в камеры и далее в цилиндры.
  • Если при работающем моторе вытащить из разъема провод питания электроклапана- двигатель должен заглохнуть. Если он продолжает работать- значит, клапан неисправен.

Кроме способов проверки электромагнитного клапана «на ходу», можно вывинтить клапан из корпуса карбюратора и попробовать подать на него напряжение с аккумулятора. Один провод от батареи присоединяют к контактной колодке, другой- к корпусу прибора. При подключении напряжения клапан должен щелкнуть и втянуть иглу внутрь себя. После размыкания цепи слышен еще один щелчок, и возвратная пружина втянет иглу. Заодно можно проверить, не загрязнены ли детали устройства смолистыми отложениями. Их нужно отмочить в бензине и удалить мягкой ветошью.

Нужно проверить также, подается ли на контакты управляющее напряжение. Его нормальное значение — 10,5-14,4 в. Если на блоке управление напряжение есть, а на контакте –нет, значит, неисправен провод. Его надо отремонтировать или заменить.

Если на разъеме блока управления напряжения нет, то, скорее всего, неисправен сам блок. Его проверяют, подключив клапан к батарее еще одним временным проводом. К выводу блока управления, управляющему клапаном, подключают вольтметр или контрольную лампочку. Далее следует запустить двигатель. По достижении оборотов в 900 об/мин лампочка должна вспыхнуть, при 2100 об/мин- погаснуть. Если снизить обороны до 1900 об/мин-опять вспыхнуть. Такое поведение лампочки означает исправность блока управления. Если же лампочка вообще не загорается и не гаснет, а также включается и выключается при других оборотах- блок управления подлежит углубленной проверке и, возможно, замене.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Тема: что делать если оборвалась обмотка катушки, как проверить на обрыв.

Когда обрывается электрическая обмотка, по которой протекает ток, то или иное устройство обычно выходит из строя (так как любые обмотки как правило играют важную функциональную роль в работе электрических приборов). Давайте с Вами рассмотрим данную проблему более тщательно, выяснив для себя важные моменты. Итак, в большинстве случаев обмотка из медного провода используется в трансформаторах, электродвигателях и электрогенераторах, клапанах, электромагнитах, реле, контакторах, катушках индуктивности и т.д.

Наиболее значимым физическим эффектом, которым обладают электрические катушки является индукция электромагнитных полей. Именно когда электрический ток протекает через обмотку провода вокруг неё образуется достаточно интенсивное электромагнитное поле, что даёт возможность влиять, как на механическое движение, так и на генерацию электродвижущей силы (наводимой на другой обмотке, находящаяся рядом). Следовательно при обрыве обмотки обрывается контакт и движение электрического тока прекращается, в результате чего прекращаются процессы взаимодействия с электромагнитными полями.

Как можно вычислить обрыв обмотки? Проверив её на целостность, предварительно прозвонив её тестером. Но не всё так просто. Одно дело, когда электрическая обмотка просто оборвалась в результате отгарания или механического повреждения. И другое дело случаи, когда устройство, содержащее обмотку, подвергается периодическому перегреву. В результате чего нарушается качество изоляционного покрова обмотки (происходит постепенное разрушение изоляционного лака). Это ведёт к появлению короткозамкнутых витков, что способствует ещё большему нагреву катушки с последующим выходом её из строя. То есть, происходит отгарание провода (или вовсе выгорание всей обмотки) и обрыв катушки.

Если электрическая катушка с обмоткой находится на устройстве, для проверки её необходимо выпаять (что бы исключить прозвонку через другие электрические цепи прибора). И только когда обмотка электрически не связана с другими цепями её можно прозванивать тестером на внутреннее сопротивление. Если оно есть (при отсутствии короткозамкнутых витков), значит с Вашей обмоткой всё нормально, она рабочая. Если же тестер, прозвонка не показывает сопротивление, величина которого зависит от длины провода обмотки, её сечения, материала (хотя в основном используется медь) значит Ваша обмотка имеет обрыв.

Принцип работы и суть возможных неисправностей

Катушка системы зажигания ДВС (на жаргоне автомехаников еще называется «бобиной») является очень важным и неотъемлемым звеном, служащим преобразователем напряжения низковольтного в высоковольтное. То есть на входе поступает напряжение от АКБ или генератора, а уже на выходе получаем высоковольтный импульс, который передается непосредственно на для выработки воспламеняющей искры в цилиндрах. Поэтому часто неопытные автовладельцы сетуют на неисправность свечей, в то время как проблема как раз не в них, и просто нужно проверить катушку.

Прежде чем перейти к разъяснению того, как проверить исправность катушки зажигания, следует понять конструкцию подобного оборудования. По сути своей это упрощенный электрический трансформатор, предназначенный для преобразования тока в автомобильной системе зажигания. Классическая катушка в основе имеет две обмотки: первичную и вторичную. Предназначение первичной – прием импульсов низкого напряжения, к примеру 12 Вольт. Она насчитывает относительно небольшое количество витков (100-150) изолированного толстого медного провода и имеет два вывода на крышке.

У вторичной обмотки витков значительно больше (15-30 тыс.), а сама проволока заметно тоньше. Как правило, «вторичка» находится внутри первичной обмотки. Один ее конец присоединен к минусовой клемме первичной обмотки, в то время как другой – к центральной клемме на крышке катушки. В центре обоих обмоток расположен металлический сердечник для усиления магнитного поля. Все это помещено в изолированный корпус с заполнением полостей трансформаторным маслом.

На деле же различные модели автомобильных катушек могут отличаться и иметь свои особенности конструкции

, но принцип работы и основные составляющие остаются неизменными для всех типов. Основоположная характеристика для любой катушки – сопротивление обмоток. Нормальный показатель определяется индивидуально для каждой модели. В случае первичной обмотки это 3-4 Ом, если же говорить о вторичной, то сопротивление возрастает до 5-9 кОм. Как раз отклонение от рекомендованных производителем величин и говорит о неисправности.

Катушка или блок

Где проблема — в катушке или блоке детектора? Проверяется заменой катушки. Если другая катушка работает нормально, значит блок вашего металлоискателя исправен. Проблема в катушке. Причем катушка необязательно такая же, нам надо проверить блок, и подойдет любая катушка от этого детектора.

Я знаю, что многим взять другую катушке негде. Я в таких случаях делал так…

Приходил с блоком в магазин металлоискателей. Типа, я выбираю катушку для своего детектора. Законное желание — проверить на своем металлоискателе.

Факты по катушкам

Замечены проблемы китайских катушек (подделок) — на жаре, перегреваясь начинают фантомить. Чаще всего это случается с катушками T2. Эта же проблема есть у подделок Garrett ACE.

Кабель катушки непростой, и от него многое зависит — прежде всего надежность и вес. Найти такой кабель в продаже пару метров, бывает проблемой.

Катушки, у которых поверхность закрыта крышкой (а не залита), более подвержены попаданию влаги.

Катушки заливают особым компаундом. Особенность этой заливки в том, чтобы она не была подвержена расширению-сужению при разных температурах. Говорят, килограмм такой заливки стоит от $30.

Желаю всем металлоискателям долгих лет службы. Но если что, все о ремонте металлоискателя собирается здесь.

P.S. Это шанс разбогатеть ➨ ➨ ➨ Прямо сейчас в продаже артефакт — Немецкие Карманные часы.. Посмотрите на эти фото, хотят 0$. Цена реальная, или оно стоит гораздо дороже?

↓↓↓ А теперь переместимся в комментарии и узнаем мнение экспертов. Крутите страницу вниз ↓↓↓, там отзывы копателей, МД специалистов, дополнительная информация и уточнения от авторов блога ↓↓↓

Акция

Содержание

  • Как проверить работоспособность соленоида?
  • Где стоят соленоиды?
  • Где находятся соленоиды акпп?
  • Как работает соленоид?
  • Как работает соленоид линейного давления?
  • Для чего нужен соленоид?
  • Почему выходит из строя соленоид акпп?
  • Где находится соленоид в машине?
  • Как проверить гидроблок акпп?
  • Можно ли отремонтировать соленоид в?
  • Что такое соленоид на машине?
  • Что называется соленоидом?
  • Можно ли ездить без соленоида?
  • Что такое соленоид и как он работает?

Если это не так, ваш соленоид можно легко проверить с помощью электрического мультиметра: настройте мультиметр для проверки целостности, подключите соленоид к его источнику питания, а затем проверьте положительные и отрицательные клеммы соленоида – если ваш мультиметр не подает звуковой сигнал, ток не проходит через …

Как проверить работоспособность соленоида?

Для проверки соленоида его необходимо переключить в режим «омметра». Отыскать соленоид в автомобиле можно посредством технической документации, которая идет с каждым транспортным средством. Соленоид должен быть подключен к бортовому компьютеру. Обратить внимание и на то, в каком состоянии находится клапан.

Где стоят соленоиды?

Где находятся соленоиды

Соленоид, или же электроклапан, по общим правилам находится в гидроблоке — гидравлической клапанной плите. В гидроблоке он вставлен в канал, где скрепляется с ним с помощью болта или специальной прижимной пластины.

Где находятся соленоиды акпп?

Где находятся соленоиды в АКПП

Соленоид (электроклапан) как ему и положено стоит в гидравлической клапанной плите или, как ее называют мастера — в гидроблоке.

Как работает соленоид?

Соленоидами управляет Электрический Блок Управления — он посылает электрические сигналы на соленоид, тем самым открывая или закрывая клапан. Это позволяет контролировать давление трансмиссионного масла при его подаче на фрикционные диски (элементы сцепления АКПП).

Как работает соленоид линейного давления?

EPC и LPC-соленоиды еще называют соленоидами контроля линейного давления. По сути, это управляющие устройства, которые распределяют масло на все остальные электромагнитные клапаны и дают ему ход в каналы. Как правило, именно они выходят из строя первыми.

Для чего нужен соленоид?

Соленоиды могут использоваться для электрического открывания дверей и защелок, открытия или закрытия клапанов, перемещения и управления роботизированными конечностями и механизмами и даже для включения электрических выключателей только путем подачи питания на его катушку.

Почему выходит из строя соленоид акпп?

Распространённой причиной выхода из строя соленоидов является использование некачественного масла или же отсутствие замены масла в коробке. Рабочая жидкость с продуктами износа постепенно заклинивает магнитный сердечник на горячей или же холодной машине.

Где находится соленоид в машине?

Соленоид устанавливается в гидроблоке (гидравлическая клапанная плита). Клапан вставляется в канал, также к нему присоединяется электропроводка для подсоединения к блоку управления. Как правило, в АКПП устанавливается от 4-х соленоидов и более (в зависимости от количества передач, особенностей конструкции коробки и т.

Как проверить гидроблок акпп?

Для диагностики устройства необходимо разобрать АКПП, так как, чтобы проверить гидроблок АКПП, необходимо корпусные плиты устройства взять на вакуум-тест. Вакуумная диагностика на основании показателей манометра покажет, исправлен гидроблок или изношен.

Можно ли отремонтировать соленоид в?

Естественно, ремонт соленоида или их группы. К сожалению, разобрать клапан, промыть его и собрать обратно не выйдет, придётся полностью менять элемент гидроблока. Стоимость его не особо высока, поэтому бояться процедуры ремонта не стоит.

Что такое соленоид на машине?

Принцип работы и для чего нужен. Соленоид (в автомобиле) — клапан – регулятор на электромагнитном управлении. Он выполняет функцию открытия и закрытия масляного канала, управляется ЭБУ авто при помощи непрерывных электрических импульсов определенной частоты.

Что называется соленоидом?

Солено́ид (от греч. σολήνα (солина) — канал, труба и ειδός (эйдос) — подобный, похожий) — разновидность катушки индуктивности. Конструктивно длинные соленоиды выполняются как в виде однослойной намотки (см. рис.), так и многослойной.

Можно ли ездить без соленоида?

Короткий ответ: да, вы обычно можете управлять автомобилем с плохим переключающим соленоидом. … Конечно, все это предполагает, что ваша конкретная коробка передач не использует соленоид для включения первой передачи, и что соленоид первой передачи не испортился.

Что такое соленоид и как он работает?

То есть соленоид — это катушка, по форме напоминающая трубу. Соленоиды, в широком смысле, — это катушки индуктивности, наматываемые проводником на цилиндрический каркас, которые могут быть как однослойными, так и многослойными.

Интересные материалы:

Беспроводные наушники как выбрать лучшие?
Беспроводные наушники как выбрать?
Беспроводные наушники как заряжать?
Беспроводные наушники на сколько хватает заряда?
Беспроводные наушники самсунг как пользоваться?
Bluetooth наушники как выбрать?
Чем можно почистить разъем для наушников?
Чем опасны беспроводные наушники?
Чем отличаются вкладыши от вакуумных наушников?
Чем полноразмерные наушники отличаются от накладных?

Содержание

  1. Аналоговый мультиметр
  2. Цифровой мультиметр
  3. Катушка индуктивности
  4. Измеритель индуктивности для мультиметра
  5. Сборка платы приставки
  6. Корпус приставки к мультиметру
  7. Что зовется индуктивным сопротивлением
  8. Настройка измерителя индуктивности
  9. Как проверить стартер люминесцентной лампы
  10. Знакомство с косвенным методом измерения индуктивности.
  11. Типовые примеры использования LCR-метра и транзистор тестера для проверки радиодеталей
  12. Резисторы – самый распространенный вид радиокомпонентов
  13. Транзисторы
  14. Конденсаторы
  15. Дроссели и катушки индуктивности
  16. Проведение замеров индуктивности
  17. Схема lc метра на микроконтроллере
  18. Настройка и функции
  19. Приставка ВЧ детектор к мультиметру
  20. Как проверить дроссель люминесцентного светильника?
  21. Способы расчёта
  22. Через силу тока
  23. Соленоид конечной длины
  24. Катушка с тороидальным сердечником

Аналоговый мультиметр

Этот тип мультиметра отображает показания измерений с помощью стрелки, под которой находится дисплей с различными шкалами значений. Каждая шкала показывает показания того или иного измерения, которые подписываются прямо на табло.

Но для новичков такой мультиметр будет не лучшим выбором, так как разобраться во всех символах, которые есть на дисплее, довольно сложно. Это может привести к неправильному пониманию результатов измерения.

Цифровой мультиметр

В отличие от аналоговых, этот мультиметр позволяет легко определять интересующие величины, при этом его точность измерения намного выше, чем у стрелочных приборов.

Кроме того, наличие переключателя между различными характеристиками электричества исключает возможность спутать одно значение или другое, поскольку пользователю не нужно понимать градацию шкалы индикации.

Результаты измерений отображаются на дисплее (в старых моделях — светодиодный, а в современных — жидкокристаллический). По этой причине цифровой мультиметр удобен для профессионалов и прост и интуитивно понятен для начинающих.

Катушка индуктивности

это изолированный провод, многократно обернутый вокруг сердечника.

Обычно рама бывает цилиндрической или тороидальной.

Индуктивность считается основной характеристикой катушки. Это качество выражает способность элемента преобразовывать переменный ток в магнитное поле.

Важно! Даже одиночный провод обладает магнитными свойствами, если ток, протекающий по нему, изменяется. Воздействие лагеря направлено таким образом, чтобы противодействовать его изменению. Если он увеличивается, поле его замедляет, а если ослабевает, то усиливает.


Индукторы

Определение направления силовых линий подчиняется «правилу большого пальца»: если большой палец руки, сжатой в кулак, указывает в направлении изменения текущей силы, сомкнутые пальцы указывают направление поля силовых линий.

Следовательно, в случае, если проволока наматывается многократно на цилиндрическую основу, силовые линии разных витков складываются и проходят через ось.

Чтобы увеличить индуктивность, в центре цилиндра помещается ферромагнитный сердечник.

Измеритель индуктивности для мультиметра

Несмотря на то, что при работе с электроникой определять индуктивность требуется редко, иногда это все же необходимо и мультиметры с измерением индуктивности найти сложно. В этой ситуации поможет специальная насадка к мультиметру, позволяющая измерить индуктивность.

Часто для такой приставки используется цифровой мультиметр, который настроен на измерение напряжения с порогом точности измерения 200 мВ, который можно приобрести в любом магазине готовой электро- и радиотехники. Это позволит вам создать простую приставку к цифровому мультиметру.

Измерительные устройства для конкретной оценки значения измеряемой емкости включают микрофарадметры, действие которых основано на зависимости тока или напряжения в цепи переменного тока от величины входящей в нее измеренной емкости. Величина емкости определяется шкалой компаратора.

В более широком смысле, для измерения характеристик конденсаторов и катушек индуктивности используются симметричные мосты переменного тока, позволяющие получить небольшую погрешность измерения (до 1%). Питание моста осуществляется от генераторов, работающих на фиксированной частоте 400-1000 Гц, в качестве индикаторов используются электрические выпрямители или милливольтметры, а также осциллографические индикаторы.

Эта мера достигается за счет уравновешивания моста в результате попеременной регулировки его двух плеч. Показания снимаются с конечностей рук тех плеч, которые служат для уравновешивания моста.

В качестве примера рассмотрим измерительные мосты, являющиеся основой индуктивности EZ-3 (рис. 1) и измерителя емкости E8-3 (рис. 2).

При мостовых весах (рис. 1) индуктивность катушки и ее добротность определяются по формулам Lx = R1R2C2; Qx = wR1C1.

При балансировке перемычек (рис.2) измеряемая емкость и сопротивление потерь определяются по формулам

Измерение емкости и индуктивности методом амперметра-вольтметра

Для измерения малых емкостей (менее 0,01 — 0,05 мкФ) и высокочастотных индукторов в спектре их рабочих частот широко используются резонансные методы. Резонансный контур обычно содержит высокочастотный генератор, индуктивно или через емкость, подключенный к измерительному контуру LC. В качестве индикаторов резонанса используются высокочастотные чувствительные устройства, которые реагируют на ток или напряжение.

Методом амперметра-вольтметра определяются относительно большие емкости и индуктивности при питании измерительной цепи от низкочастотного источника 50 — 1000 Гц. Для измерения можно использовать схемы на рис.

По показаниям приборов импеданс

где это находится

из этих выражений можно найти

Когда можно пренебречь активными потерями в конденсаторе или катушке индуктивности, используйте схему рис. 4. В этом случае

Измерение взаимной индуктивности 2-х катушек можно проводить методом амперметра-вольтметра (рис. 5) и методом попеременно соединенных катушек.

При измерении по второму методу индуктивности 2-х поочередно соединенных катушек измеряются при включении катушек согласным LI и счетчиком LII. Взаимная индуктивность рассчитывается по формуле

Измерение индуктивности можно выполнить одним из описанных выше способов.

Сборка платы приставки

собрать тестер подключение к мультиметру для измерения индуктивности без проблем в домашних условиях можно, имея базовые знания и навыки в области радиотехники и пайки микросхем.

В схеме можно использовать транзисторы КТ361Б, КТ361Г и КТ3701 с любыми буквенными обозначениями, но для более точных измерений лучше использовать транзисторы с маркировкой КТ362Б и КТ363.

Эти транзисторы установлены на плате в позициях VT1 и VT2. В положение VT3 необходимо установить кремниевый транзистор с pnp структурой, например, КТ209В с любой буквенной маркировкой. Позиции VT4 и VT5 предназначены для буферных усилителей.

Подходит большинство высокочастотных транзисторов, с параметрами h21E для одного не ниже 150, а для другого выше 50.

Любой высокочастотный кремниевый диод подойдет для позиций VD и VD2.

Резистор можно выбрать МЛТ 0,125 или аналогичный. Конденсатор С1 берется номинальной емкостью 25330 пФ, так как он отвечает за точность измерения, и его величину следует выбирать с отклонением не более 1%.

Такой конденсатор может быть изготовлен путем объединения термостабильных конденсаторов разной емкости (например, от 2 до 10 000 пФ, от 1 до 5100 пФ и от 1 до 220 пФ). Для других локаций подходят любые малогабаритные электролитические и керамические конденсаторы с допустимым разбросом в 1,5-2 раза.

Контактные провода к плате (позиция X1) могут быть припаяны или подключены с помощью пружинных зажимов для «акустических» проводов. Разъем X3 предназначен для подключения приставки к мультиметру (частотомеру).

лучше всего использовать более короткий провод для «бананов» и «крокодилов», чтобы уменьшить влияние индуктивности на показания измерений. В том месте, где провода припаяны к плате, соединение необходимо дополнительно зафиксировать каплей горячего клея.

Если вам нужно отрегулировать диапазон измерения, вы можете добавить к карте разъем для переключателя (например, трех диапазонов).

Корпус приставки к мультиметру

Тело можно сделать из готовой коробки подходящего размера, а можно сделать коробку своими руками. Вы можете выбрать любой материал, например, пластик или тонкий стеклопластик. Коробка адаптирована к размерам стола и имеет отверстия для крепления. Также есть отверстия для подключения проводки. Все фиксируется винтиками.

Приставка питается от сети через блок питания 12 В.

Что зовется индуктивным сопротивлением

Когда на катушку подается переменное напряжение, ток, протекающий через нее, изменяется в соответствии с приложенным напряжением. Это вызывает изменение магнитного поля, которое создает электродвижущую силу, предотвращающую происходящее.


Схема измерения

В такой схеме существует зависимость электрических параметров двух типов — условная и индуктивная. Они обозначаются R и XL соответственно.

В нормальных условиях блок питания назначается. Однако на реактивных элементах он равен нулю. Это связано с постоянным изменением направления переменного тока на противоположное.

В течение периода колебаний энергия дважды накачивается в катушку и столько же раз возвращается к источнику.


Определение индуктивности

Настройка измерителя индуктивности

Для калибровки насадки индуктивности требуется несколько индукционных катушек с известной индуктивностью (например, 100 мкГн и 15 мкГн).

Катушки по очереди подключаются к приставке, и, в зависимости от индуктивности, ползунок подстроечного резистора на экране мультиметра устанавливает значение 100,0 для катушки 100 мкГн и 15 для катушки 15 мкГн с точностью 5%.

Таким же способом прибор настраивается на другие диапазоны. Важным фактором является то, что для точной калибровки насадки требуются точные значения испытательной индуктивности.

Альтернативный метод определения индуктивности — программа LIMP. Но этот метод требует некоторой подготовки и понимания программы.

Но как в первом, так и во втором случае точность таких измерений индуктивности будет не очень высокой. Для работы с высокоточным оборудованием этот измеритель индуктивности не очень подходит, но для домашних нужд или радиолюбителей станет отличным помощником.

Как проверить стартер люминесцентной лампы

Процесс проверки люминесцентных осветительных приборов предполагает не только проверку целостности спирали внутри лампочки, но и работу систем разгона и запуска.

  • конденсаторы, которые не должны вздуваться, деформироваться или взрываться под воздействием чрезмерного напряжения в электрической сети;
  • колба источника света, которую нельзя затемнять.

Целостность конденсатора проверяют мультиметром в режиме омметра с максимально возможным диапазоном измерения сопротивления.

Если показания тестера меньше 2,0 МОм, можно предположить, что в конденсаторе имеется недопустимый ток утечки. Как показывает практика, оптимальным вариантом при проведении самостоятельных ремонтных работ будет полная замена всех изношенных элементов (стартера и дроссельной заслонки) на новые устройства аналогичного типа.

Знакомство с косвенным методом измерения индуктивности.

Используя резистор 1 кОм, поэкспериментируйте с индуктивностью L

1, чтобы значение индуктивности можно было рассчитать по результатам измерения параметров результирующей цепи. В этом случае вы можете использовать как генератор гармоник, так и генератор прямоугольных сигналов. В первом случае можно использовать понятие индуктивного сопротивления и в цепи резистора с известным сопротивлением и катушки измерить коэффициент передачи и рассчитать индуктивность катушки на известной частоте. Во втором случае под действием импульса можно измерить постоянную времени той же цепи и рассчитать индуктивность.

Работа с компьютером

3. Изучите характеристики поведения RC

— Цепи.

3.1. Создайте интегрированную модель RC

-цепи с параметрами, предложенными в таблице. 7.1 и подключите его к модели генератора импульсов с амплитудой 5 В. Выберите частоту генератора так, чтобы период импульсов был больше 6τ, и измерьте постоянную времени цепи. Сравните с рассчитанной постоянной времени. Поместите диаграмму и осциллограммы в отчет.

3.2. Подключите нагрузочный резистор 2R к выходу схемы, используя тумблер

1. Наблюдайте за поведением схемы при воздействии импульсов с длительным периодом и изменением частотной характеристики при переключении нагрузки. Объясните поведение схемы. Как меняются постоянная времени и частота среза при переключении? Предложите формулу для расчета постоянной времени нагруженной схемы интегратора.

3.3. Подключите к конденсатору вольтметр постоянного тока. Увеличьте частоту импульсов, подаваемых на схему интегратора, в пять раз. Наблюдайте за поведением выходного сигнала, отслеживая форму волны и показания вольтметра. Вы можете видеть, что выходной сигнал колеблется около уровня 0,5E

при условии, что ширина импульса равна половине периода. Показания вольтметра также скачут около указанного уровня. Увеличьте частоту входящих импульсов в пять раз. Видно, что показания вольтметра практически не меняются и равны 0,5
И
… Амплитуда колебаний напряжения на конденсаторе оказывается небольшой, поэтому выходное напряжение можно считать постоянным. Измените скважность входных импульсов. Показание вольтметра изменится. Найти зависимость выходного напряжения схемы интегратора от длительности импульса.

5. Для входного сигнала, уровни нуля и единицы которого определены на странице 3, постройте график поведения выходного сигнала дифференцирующей схемы при различных соотношениях постоянной времени схемы, периода повторения импульсов и рабочего цикла. Объясните результаты строительства.

6. Предложите схему устройства для преобразования положительного напряжения в отрицательное без использования трансформатора.

7. Предложите схему формирования кратковременного импульса для восстановления устройства в исходное состояние при включении питания. В этом случае и при ответе на следующие вопросы предполагается, что он используется, если необходимо, за исключением RC

— или
RL
— схемы, логические элементы с необходимыми логическими функциями.

8. Предложите схему увеличения длительности входного импульса.

9. Предложите схему, которая генерирует кратковременный импульс на заднем фронте входного импульса.

10. Предложите схему, которая генерирует кратковременные положительные импульсы на каждом фронте входного сигнала. Обратите внимание, что частота выходных импульсов в этом случае вдвое превышает входную частоту, предполагая, что рабочий цикл входных сигналов равен двум.

11. Предложите схему, которая генерирует положительные импульсы короткой длительности на каждом фронте входного сигнала, но при условии, что с нарастающим фронтом входного сигнала формируется импульс с длительностью, равной примерно половине длительности спадающего фронта.

12. Предложите схему интегратора, постоянная времени которой зависит от фронта сигнала, поступающего на вход. В этом случае возможно использование диодов.

13. Объясните амплитудно-частотные характеристики схем интегрирования и дифференцирования.

Лабораторная работа n. 8

Изучение свойств и областей возможного применения полупроводниковых диодов

Цель работы: исследование некоторых статических и динамических свойств и возможных применений полупроводниковых диодов.

Главная Информация

Полупроводниковый диод использует свойства pn

— Переход пропускает электрический ток только в одном направлении. Направление возможного тока указано в символе диода направлением стрелки. Идеальный диод должен иметь нулевое сопротивление и, следовательно, нулевое падение напряжения под действием прямого тока. Настоящий диод с прямым смещением характеризуется максимальным падением напряжения и максимально допустимым прямым током. При грубых расчетах можно предположить, что для кремниевых диодов прямое падение напряжения составляет (0,7-0,8) В, а для германиевых диодов прямое падение напряжения составляет (0,3-0,4) В. Прямое падение напряжения мало зависит от амплитуда прямого тока (если ток не близок к нулю). Идеальный диод должен иметь бесконечное сопротивление при обратном смещении. Часто в реальных диодах величиной обратного тока можно пренебречь. Вольт-амперная характеристика диода, т.е зависимость тока через диод от напряжения, хорошо описывается выражением.

В зависимости от конструкции и выбранных материалов диоды приобретают дополнительные свойства.

Есть светодиоды, особенностью которых является генерация видимого или невидимого светового излучения. Особенностью этих диодов является повышенное прямое падение напряжения и допустимый диапазон тока, в котором наблюдается свечение диода. Для ограничения тока через светодиод используются резисторы, включенные последовательно. При заданном внешнем напряжении E

Типовые примеры использования LCR-метра и транзистор тестера для проверки радиодеталей

Резисторы – самый распространенный вид радиокомпонентов

Проволочные резисторы, различающиеся номинальной мощностью

Если нет проблем с общими номиналами, измерение резисторов с низким сопротивлением может усложнить задачу. Обычным мультиметром часто можно измерить нормальное сопротивление порядка 1-2 Ом и выше, если ниже, то начинает сильно сказываться сопротивление проводов, щупов и низкое разрешение. Даже достаточно точный UNI-T UT61E имеет разрешение измерения в этом режиме всего 10 мОм, в то время как даже недорогой измеритель LCR имеет минимальное разрешение 0,1 мОм. Цифровой мультиметр UNI-T UT61E

высокая точность с возможностью подключения к ПК для удаления логов

Соответственно, если с помощью мультиметра можно относительно точно измерить резисторы сопротивлением 0,05-0,1 Ом, то при замере 10 мОм практически ничего не измерить, для сравнения ниже — измерение двух резисторов с номиналом 1 и 2,2 мОм.

Разница показаний мультиметра и тестера RLC при измерении резисторов низкого сопротивления

Измерение низкого сопротивления часто требуется при проверке, подборе размеров или производстве шунтов для измерения тока. Альтернативный вариант измерения падения напряжения, но нужен регулируемый блок питания, амперметр, вольтметр.

Токовый шунт представляет собой резистор с низким сопротивлением, который является резистором с низким сопротивлением

Возможность измерения низкого сопротивления также полезна для обнаружения таких проблем, как ошибки маркировки, особенно резисторов с низким сопротивлением.

Слева резистор обозначен как 0,1 Ом, справа как 0,22 Ом, но на самом деле они имеют почти такое же сопротивление. Такие ошибки иногда могут стоить очень дорого.

Перед установкой или пайкой резистора в цепи проверьте его сопротивление. Убедитесь, что номинальные и фактические значения резистора совпадают

Транзисторы

Оценить оригинальность полевых транзисторов поможет измерение малых сопротивлений. В настоящее время на рынке все больше и больше появляется поддельных транзисторов и транзисторов с измененной маркировкой. Хотя простое измерение сопротивления не дает полной информации, оно позволяет быстро понять, что находится перед вами.

Для теста, помимо прибора, достаточно батарейки на 9 вольт. Часто данные в таблицах данных приводятся к напряжению затвора 10 вольт, но в данном случае это несущественно. Кроме того, правильно измерять сопротивление сток-исток по току, оно обычно указывается в документации, но для этого нужен хотя бы лабораторный блок питания.

Для проверки транзистора: подключаем тестовые щупы к выводам стока и истока (обычно центральному и правому), на крайние выводы подаем 9 вольт. Постоянного приложения напряжения не требуется, достаточно зарядить конденсатор затвора, но нужно быть осторожным, не подключайте случайно аккумулятор к щупам тестера. Вы также можете сначала «загрузить» транзистор, а уже потом подключать щупы.

Конденсаторы

Конденсаторы используются несколько реже, но имеют свои особенности. Например, в отличие от резисторов они гораздо более подвержены старению, особенно если речь идет об электролитических конденсаторах, установленных в импульсных источниках питания, преобразователях материнских плат и т.д.

ESR конденсаторов имеет особое значение. Когда конденсатор сохнет почти без потери емкости, его внутреннее сопротивление значительно увеличивается.

Обычным мультиметром это не диагностировать, можно все поменять, но это не всегда удобно, часто сложно или дорого. Кроме того, измерители RLC часто позволяют проводить измерения без распайки компонента, хотя, конечно, это зависит от схемы подключения.

  1. Большинство мультиметров измеряют конденсатор как идеальный, т.е.без учета его особенностей, иногда этого достаточно, иногда нет.
  2. Более сложные устройства могут отделить конденсатор от его внутреннего сопротивления, а также измерить эти параметры по отдельности.
  3. Эквивалентная схема конденсатора выглядит намного сложнее — все эти параметры можно измерить, но это совсем другой класс устройств, который обычным радиолюбителям обычно не требуется.

Эквивалентная последовательная цепь, где R — электрическое сопротивление изоляции конденсатора, отвечающее за ток утечки, и эквивалентное последовательное сопротивление; L — эквивалентная последовательная индуктивность; — емкость конденсатора

Например, сравнение двух конденсаторов, дешевых и фирменных китайских. Несмотря на точность, обычный мультиметр считает, что они почти одинаковы, показывая лишь небольшую разницу в емкости. Но если подключить конденсаторы к измерителю LCR, то можно увидеть, что разница их внутреннего сопротивления почти в 5 раз! Если при коммутации блоков питания планируется использовать конденсаторы, именно эта разница сопротивлений будет влиять на нагрев и, как следствие, на срок службы и характеристики блока питания. Конденсаторы с высоким внутренним сопротивлением не могут эффективно гасить пики.

Дроссели и катушки индуктивности

Реакторы, трансформаторы и в целом обмоточные блоки, в отличие от конденсаторов и резисторов, еще сложнее контролировать, и, как правило, мультиметр может измерить индуктивность.

Основной характеристикой сужения является индуктивность, то есть коэффициент, определяющий зависимость скорости изменения электрического тока от напряжения на катушке

Измеритель импеданса облегчает изготовление узлов намотки, а также поиск короткого замыкания между витками. По сравнению с исправным компонентом или компонентом известного номинала можно понять, что трансформатор или индуктивность неисправны, поскольку его индуктивность сильно изменится.

Электрический контроль индукторов включает обнаружение короткого замыкания витков (короткого замыкания между витками обмотки). Если в студийной обмотке будет межвитковая цепь, то ее индуктивность резко упадет.

Как правило, существуют индикаторы для обнаружения закороченных шлейфов, но измеритель импеданса также обнаружит эту проблему. Например, слева рабочий трансформатор, справа он такой же, но с закороченным витком. Видно, что индуктивность обмотки стала значительно меньше, и виток также повлиял на результат измерения активного сопротивления обмотки.

Сравнение индуктивности рабочего трансформатора и трансформатора с замкнутым контуром

Проведение замеров индуктивности

После сборки необходимо проверить подключение мультиметра. Есть несколько способов управления устройством:

  1. Определение индуктивности измерительного соединения. Для этого необходимо замкнуть накоротко два провода, предназначенные для подключения к индуктивной катушке. Например, если длина каждого провода и перемычки составляет 3 см, образуется один виток индукционной катушки. Эта катушка имеет индуктивность 0,1 — 0,2 мкГн. При определении индуктивности более 5 мкГн эта погрешность в расчетах не учитывается. В диапазоне 0,5 — 5 мкГн при измерении необходимо учитывать индуктивность прибора. Показания ниже 0,5 мкГн являются приблизительными.
  2. Измерение неизвестного значения индуктивности. Зная частоту катушки, используя упрощенную формулу для расчета индуктивности, можно определить это значение.
  3. Если порог срабатывания кремниевых p-n переходов выше амплитуды измеряемой электрической цепи (от 70 до 80 мВ), можно измерить индуктивность катушек непосредственно в самой цепи (после ее обесточивания). Поскольку большое значение имеет емкость приставки (25330 пФ), погрешность таких измерений не будет более 5% при условии, что емкость измеряемой цепи не превышает 1200 пФ.

При подключении приставки непосредственно к катушкам, размещенным на плате, используется проводка длиной 30 см с зажимами для фиксации или щупами. Нити скручиваются из расчета один виток на сантиметр длины. При этом индуктивность атаки формируется в пределах 0,5 — 0,6 мкГн, что также необходимо учитывать при измерении индуктивности.

Схема lc метра на микроконтроллере

Настройка и функции

Сердце устройства — микроконтроллер PIC18F2520. Для стабильной работы генератора лучше всего использовать неполярные или танталовые конденсаторы, такие как C3 и C4. Можно использовать любое реле, соответствующее напряжению (3-5 вольт), но желательно с минимально возможным контактным сопротивлением в замкнутом положении. Для звука используется зуммер без встроенного генератора или обычный пьезоэлемент.

При первом запуске собранного устройства программа автоматически запускает режим регулировки контрастности дисплея. С помощью кнопок 2/4 установите приемлемый контраст и нажмите OK (3). После выполнения этих действий устройство следует выключить и снова включить. В меню есть раздел «Настройка» для некоторых настроек работы прибора. В подменю «Конденсатор» необходимо указать точное значение используемого калибровочного конденсатора (C_cal) в пФ. Точность указанной оценки напрямую влияет на точность измерения. Можно проверить работу самого генератора с помощью частотомера в контрольной точке «B», но лучше использовать систему контроля частоты, уже встроенную в подменю «Генератор».

Выбирая L1 и C1, необходимо получить стабильные показания частоты в диапазоне 500-800 кГц. Высокая частота положительно влияет на точность измерения; при этом с увеличением частоты может ухудшиться стабильность работы генератора. За частотой и стабильностью генератора, как я уже сказал выше, удобно следить в разделе меню «Осциллятор». Если у вас есть внешний откалиброванный частотомер, вы можете откалибровать частотомер LC-метр. Для этого подключите внешний частотомер к контрольной точке «B» и с помощью кнопок +/- в меню «Oscillator» выберите постоянную «K», чтобы показания обоих частотомеров совпадали. Для корректной работы системы индикации состояния аккумулятора необходимо настроить резистивный делитель на резисторах R9, R10, затем установить перемычку S1 и записать значения в поля раздела «Аккумулятор».

Приставка ВЧ детектор к мультиметру

Простейшая схема приставки к цифровому мультиметру для измерения переменного тока ВЧ. Подходит для измерения мощности звукового усилителя или радиопередатчика. Мультиметр должен быть интегрирован с простой внешней измерительной головкой, содержащей высокочастотный детектор на германиевых диодах. Эта схема выпрямляет и фильтрует переменное напряжение сигнала, преобразовывая его в легко измеряемую постоянную.

Входная емкость ВЧ-головки менее 3 пФ, что позволяет подключать ее непосредственно к каскадной схеме. Можно использовать советские высокочастотные диоды Д9, ГД507 или Д18. ВЧ-головка собрана в экранированном корпусе, на котором расположены клеммы для подключения зонда или проводов к измеряемой цепи. Связь с тестером должна осуществляться с помощью экранированного телевизионного кабеля.

Как проверить дроссель люминесцентного светильника?

Пускатель представляет собой индуктор, намотанный на ферромагнитный сердечник с высокой магнитной проницаемостью. Он является неотъемлемой частью источников электромагнитного питания (EMPRA). В фазе зажигания ЛДС он вместе со стартером обеспечивает нагрев катодов, а затем создает импульс высокого напряжения (до 1000 В) для создания люминесцентного разряда в баллоне за счет его характерной электродвижущей силы (ЭДС) самоиндукция.

После того, как стартер был отключен от работы, индуктивное реактивное сопротивление используется индуктивным реактивным сопротивлением для поддержания разрядного тока через LDS на уровне, необходимом для постоянной и стабильной ионизации газо-ртутной смеси, используемой в баллоне. Амплитуда индуктивности такова, что сопротивление индуктора переменного тока защищает электроды катушки от перегрева и перегорания.

работоспособность индуктивности люминесцентной лампы можно проверить, измерив сопротивление с помощью омметра. Он является частью комбинированного прибора электрика.

Если вы проверите ускоритель люминесцентной лампы мультиметром, вы можете найти его хорошее состояние, в котором измеренное активное сопротивление совпадает с данными в ее паспорте, или вы можете столкнуться с несоответствиями. Проанализировав их, можно сделать вывод о природе обнаруженного дефекта. Короткие замыкания сопровождаются неприятным запахом и изменением цвета защитной изоляции. При внешнем проявлении или обнаружении отклонения измеренного значения сопротивления от его номинального значения индуктивность подлежит замене.


Проверка индуктивности люминесцентной лампы.

Способы расчёта

Есть несколько основных способов определения индуктивности катушки. Все формулы, которые будут использоваться при расчетах, легко найти в справочниках или в Интернете. Весь процесс расчета довольно прост и не составит труда для людей с базовыми математическими и физическими знаниями.

Через силу тока

Этот расчет считается самым простым способом определения индуктивности катушки. Формула через силу тока следует из самого термина. Какая индуктивность катушки — можно определить по формуле: L = Ф / I, где:

  • L — индуктивность цепи (в генри);
  • это величина магнитного потока, измеренная по Веберу;
  • I — ток в катушке (в амперах).

Эта формула подходит только для однооборотной схемы. Если катушка состоит из нескольких витков, вместо значения магнитного потока используется общий поток (суммарное значение). Когда одинаковый магнитный поток проходит через все катушки, то для определения общего значения достаточно умножить значение одной из них на общее количество.

Соленоид конечной длины

Соленоид представляет собой длинную и тонкую катушку, у которой толщина намотки намного меньше диаметра. В этом случае расчеты производятся по той же формуле, что и сила тока, только величина магнитного потока будет определяться следующим образом: Ф = µ0NS / l, где:

  • µ0 — магнитная проницаемость среды, определяемая по справочным таблицам (для воздуха, которое является значением по умолчанию в большинстве расчетов, оно составляет 0,00000126 генри / метр);
  • N — количество витков катушки;
  • S — площадь поперечного сечения цепи, измеренная в квадратных метрах;
  • l — длина соленоида в метрах.

Коэффициент самоиндукции соленоида также можно рассчитать согласно способу определения энергии магнитного потока поля. Это более простой вариант, но он требует некоторых значений. Формула для определения индуктивности: L = 2W / I 2, где:

  • W — энергия магнитного потока, измеренная в джоулях;
  • I — сила тока в амперах.

Катушка с тороидальным сердечником

В большинстве случаев тороидальная катушка наматывается на сердечник из материала с высокой магнитной проницаемостью. В этом случае формулу прямого соленоида бесконечной длины можно использовать для расчета индуктивности. Он имеет следующий вид: L = N µ0 µS / 2 πr, где:

  • N — количество витков катушки;
  • µ — относительная магнитная проницаемость;
  • µ0 — магнитная постоянная;
  • S — площадь поперечного сечения сердечника;
  • π — математическая постоянная, равная 3,14;
  • r — средний радиус тора.

Тороидальная катушка

Понравилась статья? Поделить с друзьями:
  • Как позвонить соискателю на хх ру
  • Как позвонить создателям одноклассников
  • Как позвонить согаз мед рязань
  • Как позвонить совкомбанк бесплатно горячая линия оператору
  • Как позвонить советскую гирлянду