Как позвонить динистор

Как проверить динистор

Столкнувшись с самостоятельным ремонтом лампочек экономок, симисторных регуляторов мощности или диммеров, многие, не найдя реальной поломки, начинают искать причину в такой неприметной детали, как динистор. Необходимо отметить, что динистор выходит из строя крайне редко, а для его проверки необходимо немного повозится. Для особо продвинутых энтузиастов мы сегодня наглядно продемонстрируем, как проверить динистор.

Как проверить динистор?

Работа динистора основана на пробое. В исходном положении динистор не способен проводить через себя ток, пока на его выводы не подадут напряжение пробоя. После этого происходит лавинный пробой динистора и он начинает через себя пропускать ток, достаточный для управления симистором или тиристором.

Многие задают вопрос, как проверить динистор мультиметром или тестером? На него нужно дать однозначный и четкий ответ. С помощью мультиметра динистор можно проверить только на пробой; если динистор в обрыве, проверка динистора мультиметром результатов не даст.

Схема проверки динистора

Для реальной проверки на работоспособность нужно собрать схему проверки динисторов.
как проверить динистор
Она включает в себя совсем немного компонентов:

  • блок питания с возможностью регулировки напряжения в пределах 30-40 В.
  • резистор 10 кОм.
  • светодиод.
  • подопытный образец — симметричный динистор DB3.

Очень редко в радиолюбителей есть блоки питания с диапазоном регулировки до 40 В, для этих целей можно соединить последовательно два или даже три регулируемых блока питания.

Проверка динистора DB3 начинается со сборки схемы. Устанавливаем выходное напряжение порядка 30 В и постепенно подымаем его немного выше, до момента загорания светодиода. Если светодиод загорелся – динистор уже открыт. При уменьшении напряжения светодиод потухнет – динистор закрыт.
как проверить динистор
Как видим, светодиод начинает тускло загораться при подаче на схему напряжения 35,4 В. С учетом, что 2,4 В уходит на светодиод, напряжение пробоя у подопытного динистора DB3 составляет порядка 33 В. Из паспортных данных значение напряжение пробоя динистора DB3 может колебаться в пределах от 28 до 36 В.

Как видим, проверка динистора DB3 занимает всего лишь несколько минут. Если необходимо проверить несимметричный динистор, необходимо четко соблюдать полярность его включения в этой схеме.

comments powered by HyperComments

  • проверить

Динистор – неуправляемая разновидность тиристоров, иначе он называется триггер-диодом. Изготавливается из полупроводникового монокристалла, имеющего несколько p-n переходов. Обладает двумя устойчивыми состояниями: открытым и закрытым. Подходят для применения в цепях непрерывного действия, в которых наибольшее значение тока составляет 2 А, а также в импульсных режимах, при условии, что максимальный ток – 10А, а напряжения находятся в диапазоне 10-200 В. Этот элемент обычно выполняет функции электронного ключа. Его открытое положение соответствует высокой проводимости, закрытое – низкой. Переход из открытого в закрытое состояние происходит практически мгновенно.

Содержание статьи

  • Как графически обозначается динистор на схеме
  • Таблица наиболее популярных марок динисторов
  • Особенности устройства полупроводникового неуправляемого тиристора
  • Виды динисторов
  • Основные характеристики динисторов
  • Схема работы динистора
  • Области применения динисторов
  • Как проверить работоспособность динистора

Как графически обозначается динистор на схеме

Четкого стандарта, регламентирующего изображение этого элемента на схеме, не существует. Самый распространенный вариант – изображение диода + дополнительная перпендикулярная черта. На зарубежных описаниях этот элемент может обозначаться словами trigger diode, буквами VD, VS, V, D.

Как графически обозначается динистор на схеме

Условное графическое изображение симметричных динисторов имеет несколько вариантов.

Условное графическое изображение симметричных динисторов

Маркировка, наносимая на корпус динистора, состоит из букв и цифр. Наиболее популярны устройства российского производства КН102 (А…И). Первая буква в обозначении характеризует материал, из которого изготовлено устройство. К – кремний. Число из трех цифр обозначает номер разработки. Буквы, стоящие в конце маркировки, являются буквенными кодами напряжения включения.

Таблица наиболее популярных марок динисторов

Таблица наиболее популярных марок динисторов

Особенности устройства полупроводникового неуправляемого тиристора

Структура динистора четырехслойная с тремя p-n-переходами. Эмиттерные переходы прямого направления – p-n1 и p-n3, переход p-n2 – коллекторный, обратной направленности, обладает высоким сопротивлением. Выводы:

  • анод – выводится из p-области;
  • катод – выводится из n-области.

Отличие динистора от диода – количество p-n-переходов (у диода один p-n-переход), от обычного тиристора – отсутствие третьего, управляющего, входа.

Основные плюсы trigger diode:

  • обеспечение несущественной потери мощности;
  • возможность эксплуатации в широком температурном интервале – -40…+125°C;
  • возможность получения высокого выходного напряжения.

Минус – отсутствие возможности управлять работой этого устройства.

Виды динисторов

В зависимости от конструктивных особенностей различают следующие виды этих устройств:

  • Однополярные. Функционируют только при положительном смещении. Если уровень максимально допустимого обратного напряжения будет превышен, элемент сгорит.
  • Симметричные. Имеют равнозначные выводы, могут работать при прямом и обратном смещениях. В современной электронике широко применяются реверсивно-включаемые мощные динисторы (РВД). Эти элементы с реверсивно-импульсивными свойствами способны осуществить коммутацию токов до 500 кА в микросекундном или субмиллисекундном диапазонах. Они используются для коммутации импульсных токов в твердотельных ключах в схемах электропитания силовых агрегатов.

Основные характеристики динисторов

При выборе подходящего динистора учитывают следующие параметры:

  • Разность потенциалов в открытом состоянии, измеряется в вольтах. Указывается применительно к величине тока открытия.
  • Наименьшая величина тока в открытом состоянии, единица измерения – миллиамперы. Эта характеристика зависит от температуры устройства. С ее повышением значение минимального тока уменьшается.
  • Время переключения – временной промежуток, составляющий микросекунды, в течение которого триггер-диод переходит из одного устойчивого состояния в другое.
  • Ток запертого состояния. Зависит от значения обратного напряжения. В общем случае его величина не превышает 500 мкА.
  • Емкость. Измеряется в пикофарадах, характеризует общую паразитную емкость устройства. Если этот показатель высокий, то элемент в высокочастотных цепях не используется.

Схема работы динистора

Основной принцип работы динистора: пропускание тока начинается при достижении определенного значения напряжения, которое является постоянным и не может быть изменено, поскольку триггер-диоды является неуправляемым.

Наглядное представление о том, как работает динистор, дает вольтамперная характеристика (ВАХ). На ВАХ симметричного элемента видно, что он будет функционировать при любом направлении прикладываемого напряжении. Верхняя и нижняя ветви центрально симметричны. Такую деталь можно включать в схему без учета полярности.

Схема работы динистора

На графике изображены 3 возможных рабочих режима:

  • Красный участок – закрытое состояние, при котором значение текущего напряжения ниже напряжения включения. Ток через триггер-диод не проходит.
  • Синий – характеризует момент включения, когда напряжение на выводах достигает напряжения включения и элемент включается.
  • Зеленый – открытое состояние, при котором характеристики элемента стабилизированы. В характеристиках на триггер-диод указывается наибольшее значение тока, который может через него протекать.

Несимметричные dinistor можно включать в схему только с соблюдением полярности. При обратном подсоединении элемент будет закрыт при напряжениях, не превышающих допустимое значение, при их превышении деталь сгорит.

По схеме функционирования триггер-диод похож на классический диод, но есть существенное отличие. Если напряжение открытия для диода очень мало и составляет десятки и сотни милливольт, то для динистора напряжение включения составляет несколько десятков вольт. Для закрытия устройства ток, проходящий через него, необходимо понизить до значения, которое меньше величины тока удержания, или разомкнуть цепь электропитания.

Области применения динисторов

Рабочие характеристики этого элемента позволяют его использовать в следующих в следующих схемах:

  • Тиристорный регулятор мощности и импульсного генератора. Динистор в схеме нужен для генерации импульса, открывающего тиристор.
  • Высокочастотный преобразователь, применяемый для питания люминесцентных ламп. Для этой цели используются симметричные устройства. Монтаж может быть обычным или поверхностным.
  • Схемы управления плавного пуска двигателей.

Как проверить работоспособность динистора

Этот элемент выходит строя очень редко. С использованием мультиметра динистор из-за его технических особенностей проверить невозможно, поэтому для проведения детальной проверки собирают несложную тестовую схему.

Как проверить работоспособность динистора

В проверочную схему входят:

Для сборки этой схемы понадобятся: резистор сопротивлением 10 кОм, светодиод для светоиндикации, проверяемый элемент, лабораторный источник питания с возможностью регулировать постоянное напряжение в интервале 30-40 В. Если имеются только маломощные ИП c регулировкой, то их включают в цепь последовательным соединением.

Этапы проверки:

  • Задают исходное напряжение 30 В, которое медленно повышают до загорания светодиода, означающего открытие элемента.
  • Отмечают напряжение, при котором загорелся светодиодный индикатор, и вычитают разность потенциалов, расходуемую на светодиод.
  • По справочнику проверяют нормативный интервал напряжений включений для проверяемого динистора. Если полученное в результате тестирования значение входит в этот диапазон, значит, устройство полностью исправно.

При включении однонаправленного динистора в тестовую схему необходимо соблюдать полярность.


Была ли статья полезна?

Да

Нет


Другие материалы по теме

Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.

Динистор DB3 является двунаправленным диодом (триггер-диод), который специально создан для управления симистором или тиристором. В основном своем состоянии динистор DB3 не проводит через себя ток (не считая незначительный ток утечки) до тех пор, пока к нему не будет приложено напряжение пробоя.

В этот момент динистор переходит в режим лавинного пробоя и у него проявляется свойство отрицательного сопротивления. В результате этого на динисторе DB3 происходит падение напряжения в районе 5 вольт, и он начинает пропускать через себя ток, достаточный для открытия симистора или тиристора.

фото динистора DB3

Диаграмма вольт-амперной характеристики динистора DB3 изображена ниже:

ВАХ динистора DB3

Поскольку данный вид полупроводника является симметричным динистором (оба его вывода являются анодами), то нет абсолютно ни какой разницы, как его подключать.

Характеристики динистора DB3

характеристики динистора

габаритные размеры динистора

Аналоги динистора DB3

  • HT-32

Как проверить динистор DB3

Единственное, что можно определить простым мультиметром – это короткое замыкание в динисторе, в этом случае он будет пропускать ток в обоих направлениях. Подобная проверка динистора схожа с проверкой диода мультиметром.

Для полной же проверки работоспособности динистора DB3 мы должны плавно подать напряжение, а затем посмотреть при каком его значении происходит пробой и появляется проводимость полупроводника.

как проверить динистор DB3

Источник питания

Блок питания 0…30В/3A

Набор для сборки регулируемого блока питания…

Первое, что нам понадобится, это регулируемый источник питания постоянного напржения от 0 до 50 вольт. На рисунке выше показана простая схема подобного источника. Регулятор напряжения, обозначенный в схеме — это обычный диммер, используемый для регулировки комнатного освещения. Такой диммер, как правило, для плавного изменения напряжения имеет ручку или ползунок. Сетевой трансформатор 220В/24В. Диоды VD1, VD2 и конденсаторы С1, С2 образуют однополупериодный удвоитель напряжения и фильтр.

Этапы проверки

Шаг 1: Установите нулевое напряжение на выводах Х1 и Х3. Подключите вольтметр постоянного тока к Х2 и Х3. Медленно увеличивайте напряжение. При достижении напряжения на исправном динисторе около 30 (по datasheet от 28В до 36В), на R1 резко поднимется напряжение примерно до 10-15 вольт. Это связано с тем, что динистор проявляет отрицательное сопротивление в момент пробоя.

Шаг 2: Медленно поворачивая ручку диммера в сторону уменьшения напряжения источника питания, и на уровне примерно от 15 до 25 вольт напряжение на резисторе R1 должно резко упасть до нуля.

Шаг 3: Необходимо повторить шаги 1 и 2, но уже подключив динистор на оборот.

Проверка динистора с помощью осциллографа

Если есть осциллограф, то мы можем собрать на тестируемом динисторе DB3 релаксационный генератор.

проверка динистора DB3 осциллографом

В данной схеме конденсатор заряжается через резистор сопротивлением 100k. Когда напряжение заряда достигает напряжения пробоя динистора, конденсатор резко разряжается через него, пока напряжение не уменьшится ниже тока удержания, при котором динистор закрывается. В этот момент (при напряжении около 15 вольт) конденсатор опять начнет заряжаться, и процесс повторится.

диаграмма

Период (частота) с начала заряда конденсатора и до пробоя динистора зависит от емкости самого конденсатора и сопротивления резистора. При постоянном сопротивлении резистора в 100 кОм и напряжении питания 70 вольт емкость будет следующая:

  • C = 0,015мкф — 0,275 мс.
  • С = 0,1мкф — 3 мс.
  • C = 0,22 мкф — 6 мс.
  • С = 0,33 мкф — 8,4 мс.
  • С = 0,56 мкф — 15 мс.

Скачать datasheet на DB3 (242,6 KiB, скачано: 11 853)

Инвертор 12 В/ 220 В

Инвертор с чистой синусоидой, может обеспечивать питание переменно…

Динистор DB3 является двунаправленным диодом (триггер-диод), который специально создан для управления симистором или тиристором. В основном своем состоянии динистор DB3 не проводит через себя ток (не считая незначительный ток утечки) до тех пор, пока к нему не будет приложено напряжение пробоя.

В этот момент динистор переходит в режим лавинного пробоя и у него проявляется свойство отрицательного сопротивления. В результате этого на динисторе DB3 происходит падение напряжения в районе 5 вольт, и он начинает пропускать через себя ток, достаточный для открытия симистора или тиристора.

Диаграмма вольт-амперной характеристики динистора DB3 изображена ниже:

Простая схема для проверки динистора

Работа динистора основана на явление пробоя полупроводника. В исходном состоянии динистор не пропускает через себя ток, пока на его выводы не подадут напряжение достаточное для пробоя полупроводникового кристалла. После этого начинается лавинный пробой динистора и он пропускает через себя электрический ток
Многие в комментариях спрашивают, как проверить динистор мультиметром? На этот вопрос могу дать только один ответ. С помощью типоаого мультиметра динистор можно проверить только на пробой кристалла; если динистор находится в обрыве, проверка динистора тестером никаких результатов не даст.

Для проверки на 100% работоспособность динисторов нужно собрать небольшую схему контроля.

Как видите схема проверки очень проста и состоит из резистора с сопротивлением 10 кОм, индикаторного светодиода и собственно самого пациента который нуждается в проверке. Также вам понадобится лабороторный источник питания с возможностью регулировки постоянного напряжения в диапазоне от 30 до 40 вольт.

Если у вас такой блок питания отсутствует то для этих задач можно соединить последовательно два или даже три регулируемых блока питания.

Проверка динистора начинается со сборки схемы, как на рисунке выше. Далее задаем выходное напряжение около 30 В постоянного тока и постепенно увеличиваем его с небольшим шагом, до момента загорания светодиодного индикатора. Если светодиод начинает светится – динистор уже открыт. При снижении уровня напряжения светодиод гаснет, значит динистор закрыт.

Как видим, при проверке подопытного тиристора типа DB3 светодиод начинает тускло светится при напряжении на выходе питающего блока 35,4 В. С учетом того, что потенциал в 2,4 В расходуется на светодиод, реальное напряжение пробоя у этого динистора будет около 33 В. Из справочных данных значение напряжение пробоя динистора DB3 лежит в интервале от 28 до 36 В.

Как видим, проверка динистора с помощью этой схемы процедура достаточно быстрая. Если требуется проверить несимметричный динистор, нужно обязательно соблюдать полярность его включения в этом измерительном приборе.

Динистор это разновидность полупроводниковых диодов относящихся к классу тиристоров. Динистор состоит из четырех областей различной проводимости и имеет три p-n перехода. В электроники он нашел довольно ограниченное применение, ходя его можно найти в конструкциях энергосберегающих ламп под цоколь E14 и E27, где он применяется в схемах запуска. Кроме того он попадается в пускорегулирующих аппаратах ламп дневного света.

Назначение динистора

Динистор — это полупроводниковый элемент, обладающий двумя устойчивыми состояниями: закрытым и открытым. Изготавливается он из полупроводникового монокристалла с несколькими p-n переходами. В общем случае его можно рассматривать как электронный ключ, когда одно его состояние (закрытое) соответствует низкой проводимости, а другое (открытое) — высокой.

Динистор относится к «тиристорному семейству» радиоэлементов и не имеет принципиальных различий с тиристором. Единственное, что его отличает — это условия смены устойчивого состояния. В отличие от тиристора, имеющего три вывода, у динистора имеется их только два, то есть у него нет управляющего входа.

Отсюда и второе его название — диодный тиристор. Выводы динистора называются анодом и катодом. Первый выводится из крайней p-области, а второй — из n-области.

Изобретение тиристоров связывают с именем английского физика Уильяма Брэдфорда Шокли. После изобретения точечного транзистора учёный посвятил свои эксперименты созданию монолитного элемента. Так, в 1949 году был представлен прототип плоскостного транзистора, а уже в следующем году Спаркс и Тил, помощники Шокли, сумели изготовить трёхслойную структуру, позволяющую выпускать высокочастотные радиоэлементы на основе p-n переходов. Исследования учёного привели к созданию полупроводникового диода, названного диодом Шокли. Его конструкция представляет собой четырехслойный элемент со структурой pnpn типа.

В современной электронике динистор чаще всего применяется в схеме запуска энергосберегающих ламп и пускорегулирующих устройств дневного света.

На схемах и в литературе элемент обозначается с помощью латинских букв VD или VS, а за его графическое обозначение принят треугольник вместе с проходящей через его середину прямой линией, символизирующей электрическую цепь. В результате образуется своего рода стрелка, указывающая направление прохождения тока. Перпендикулярно прямой линии посередине и около вершины треугольника рисуются две короткие черты. Первая обозначает базовую область, а вторая — катод.

Динистор DB3. Характеристики, проверка, аналог, datasheet

Динистор DB3 является двунаправленным диодом (триггер-диод), который специально создан для управления симистором или тиристором. В основном своем состоянии динистор DB3 не проводит через себя ток (не считая незначительный ток утечки) до тех пор, пока к нему не будет приложено напряжение пробоя.

В этот момент динистор переходит в режим лавинного пробоя и у него проявляется свойство отрицательного сопротивления. В результате этого на динисторе DB3 происходит падение напряжения в районе 5 вольт, и он начинает пропускать через себя ток, достаточный для открытия симистора или тиристора.

Динисторы – принцип работы, как проверить, технические характеристики

Динистор – неуправляемая разновидность тиристоров, иначе он называется триггер-диодом. Изготавливается из полупроводникового монокристалла, имеющего несколько p-n переходов. Обладает двумя устойчивыми состояниями: открытым и закрытым. Подходят для применения в цепях непрерывного действия, в которых наибольшее значение тока составляет 2 А, а также в импульсных режимах, при условии, что максимальный ток – 10А, а напряжения находятся в диапазоне 10-200 В. Этот элемент обычно выполняет функции электронного ключа. Его открытое положение соответствует высокой проводимости, закрытое – низкой. Переход из открытого в закрытое состояние происходит практически мгновенно.

Единственное, что можно определить простым мультиметром – это короткое замыкание в динисторе, в этом случае он будет пропускать ток в обоих направлениях. Подобная проверка динистора схожа с проверкой диода мультиметром.

Для полной же проверки работоспособности динистора DB3 мы должны плавно подать напряжение, а затем посмотреть при каком его значении происходит пробой и появляется проводимость полупроводника.

Источник питания

Первое, что нам понадобится, это регулируемый источник питания постоянного напржения от 0 до 50 вольт. На рисунке выше показана простая схема подобного источника. Регулятор напряжения, обозначенный в схеме — это обычный диммер, используемый для регулировки комнатного освещения. Такой диммер, как правило, для плавного изменения напряжения имеет ручку или ползунок. Сетевой трансформатор 220В/24В. Диоды VD1, VD2 и конденсаторы С1, С2 образуют однополупериодный удвоитель напряжения и фильтр.

Этапы проверки

Шаг 1: Установите нулевое напряжение на выводах Х1 и Х3. Подключите вольтметр постоянного тока к Х2 и Х3. Медленно увеличивайте напряжение. При достижении напряжения на исправном динисторе около 30 (по datasheet от 28В до 36В), на R1 резко поднимется напряжение примерно до 10-15 вольт. Это связано с тем, что динистор проявляет отрицательное сопротивление в момент пробоя.

Шаг 2: Медленно поворачивая ручку диммера в сторону уменьшения напряжения источника питания, и на уровне примерно от 15 до 25 вольт напряжение на резисторе R1 должно резко упасть до нуля.

Шаг 3: Необходимо повторить шаги 1 и 2, но уже подключив динистор на оборот.

Принцип работы

Рассматривая динистор в качестве четырёхструктурного элемента, его можно представить в виде двух взаимосвязанных транзисторов n и p типа проводимости. Для работы транзистора необходимо появление тока на переходе база-эмиттер. Если на него не подано напряжение, тогда через радиоэлемент проходить ток не будет. Связано это с тем, что открытие транзисторов контролируется друг другом. Иными словами, чтобы открыть один из этих транзисторов, необходимо перевести в открытое состояние другой.

Между выводами динистора должно присутствовать напряжение определённой величины, позволяющее перевести работу одного из двух транзисторов в режим насыщения. В результате откроется второй элемент, и динистор начнёт пропускать ток.

Для перевода структуры в режим отсечки тока понадобится понизить величину напряжения, что приведёт к пропаданию тока смещения и, соответственно, тока базы на втором транзисторе. Динистор перестанет пропускать ток.

Существенную роль играет и полярность приложенного к выводам радиодетали напряжения. Когда на анод подаётся минус, через элемент ток практически не проходит. Такое включение называют обратным. Если же полярность поменять, то через устройство начнёт протекать ток небольшой величины — ток закрытия. Напряжение, соответствующее ему, определяет наибольшее значение, при котором динистор находится в закрытом состоянии. Чтобы динистор открыть, понадобится напряжение порядка десятков вольт.

Динисторы, как и тринисторы, пропускают ток только в одном направлении. Чтобы ток проходил в обоих направлениях, они включаются по встречно-параллельной схеме. Также для этого может использоваться пятислойная структура pnpnp типа.

Проверка динистора с помощью осциллографа

Если есть осциллограф, то мы можем собрать на тестируемом динисторе DB3 релаксационный генератор.

В данной схеме конденсатор заряжается через резистор сопротивлением 100k. Когда напряжение заряда достигает напряжения пробоя динистора, конденсатор резко разряжается через него, пока напряжение не уменьшится ниже тока удержания, при котором динистор закрывается. В этот момент (при напряжении около 15 вольт) конденсатор опять начнет заряжаться, и процесс повторится.

Период (частота) с начала заряда конденсатора и до пробоя динистора зависит от емкости самого конденсатора и сопротивления резистора. При постоянном сопротивлении резистора в 100 кОм и напряжении питания 70 вольт емкость будет следующая:

  • C = 0,015мкф — 0,275 мс.
  • С = 0,1мкф — 3 мс.
  • C = 0,22 мкф — 6 мс.
  • С = 0,33 мкф — 8,4 мс.
  • С = 0,56 мкф — 15 мс.

Скачать datasheet на DB3 (242,6 KiB, скачано: 8 694)

Как проверить динистор?

Дата: 23.05.2016 //

Столкнувшись с самостоятельным ремонтом лампочек экономок, симисторных регуляторов мощности или диммеров, многие, не найдя реальной поломки, начинают искать причину в такой неприметной детали, как динистор. Необходимо отметить, что динистор выходит из строя крайне редко, а для его проверки необходимо немного повозится. Для особо продвинутых энтузиастов мы сегодня наглядно продемонстрируем, как проверить динистор.

Как проводится проверка

После того, как мы разобрались с полупроводниками электрической схемы и предназначением прибора, можно ответить на вопрос «как проверить диод на исправность?». Вся суть проверки диодов мультиметром заключается в их односторонней пропускной способности электрического тока. При соблюдении этого правила элемент электрической схемы считается функционирующим правильно и без сбоев. Обычные диоды и Шоттки можно спокойно проверить с помощью данного прибора. Чтобы проверить этот полупроводниковый элемент мультиметром, необходимо проделать следующие манипуляции:

Проверка

  • необходимо удостовериться, что на вашем мультиметре имеется функция проверки диодов;
  • при наличии такой функции подключаем щупы прибора к той стороне полупроводника, с которой будет осуществляться «прозвон». Если данная функция отсутствует, тогда переводим прибор с помощью переключателя на значение 1кОМ. Также следует выбрать режим для измерения сопротивления;
  • красный провод измерительного устройства необходимо подключить к анодному концу, а черный – к катодному;
  • после этого нужно наблюдать за изменениями прямого сопротивления полупроводника;
  • делаем выводы о имеющемся или отсутствующем напряжении

После этого прибор можно переключить, чтобы проверить на предмет утечки или высокого замыкания. Для этого необходимо поменять места вывода диода. В таком состоянии также необходимо провести оценку полученных значений прибора.

Как проверить динистор?

Работа динистора основана на пробое. В исходном положении динистор не способен проводить через себя ток, пока на его выводы не подадут напряжение пробоя. После этого происходит лавинный пробой динистора и он начинает через себя пропускать ток, достаточный для управления симистором или тиристором.

Многие задают вопрос, как проверить динистор мультиметром или тестером? На него нужно дать однозначный и четкий ответ. С помощью мультиметра динистор можно проверить только на пробой; если динистор в обрыве, проверка динистора мультиметром результатов не даст.

Диагностика прибора

Осуществляя проверку радиоэлемента на исправность, чаще всего используют мультиметр. Удобство применения этого измерительного прибора объясняется его многофункциональностью. С его помощью можно прозвонить элемент на пробой или измерить уровни пороговых напряжений. При этом неважно, аналоговый или цифровой тип измерителя используется.

Для получения верных результатов измерения понадобится подготовить мультиметр к работе. Вся суть подготовительной операции сводится к проверке элемента питания тестера. При работе с цифровым устройством необходимо обратить внимание на значок мигающей батарейки. Если он есть, значит, элемент питания необходимо заменить. Для аналогового устройства перед работой выполняется установка стрелки в нулевое положение. Если это сделать невозможно, то элемент питания нужно заменить.

Для достоверного результата во время измерения мультиметром также желательно проследить за окружающей температурой. Связанно это с тем, что при увеличении температуры проводимость полупроводников возрастает. Оптимальной для измерения считается температура около 22 °C.

Прозвонка без выпаивания

Из-за специфики устройства проверить симистор мультиметром, не выпаивая, не так уж и просто. Для полной проверки используется электрическая схема, позволяющая провести ряд необходимых измерений. Единственное, что можно сделать с помощью мультиметра, так это проверить его на явный пробой.

Для этого тестер переключается в режим позвонки диодов, после чего измерительными щупами дотрагиваются до выводов динистора. При любой полярности тестер должен показать обрыв, что будет обозначать отсутствие пробоя в элементе. Но это не будет гарантировать исправность прибора. Если при измерении мультиметр покажет короткое замыкание, то такой тиристор можно уже будет дальше не проверять, так как он неисправен.

При этом следует знать, что прозванивать радиоэлемент в схеме будет некорректно, так как параллельно с его выводом могут быть подключены другие радиоэлементы, влияющие на измерения. Выполняя простую прозвонку, необходимо хотя бы один из вводов динистора отсоединить от печатной платы. Для того чтобы проверить динистор, не выпаивая, можно использовать возможности той схемы, в которой он установлен.

Известно, что радиоэлемент открывается только при подаче на его выводы определённого уровня напряжения, поэтому можно попытаться достичь этого порогового значения.

В этом случае для проверки мультиметр переключается на режим измерения напряжения. В зависимости от предполагаемого напряжения пробоя выбирается диапазон измерения. Измерительные щупы подключаются параллельно к выводам элемента, после чего измеряется уровень сигнала. Если при изменении входного сигнала произойдёт скачок напряжения, то это и будет обозначать напряжение пробоя динистора, то есть его работоспособность.

Тестовая схема

Чтобы получить уверенность в работоспособности элемента, радиолюбители используют тестовые схемы. Они бывают разной степени сложности, что в итоге влияет на точность полученного результата. Самая простая схема состоит из трёх элементов:

  • регулируемого источника питания;
  • резистора;
  • индикатора.

В качестве последнего можно использовать светодиод. Собрав такую схему, приступают к проверке. Параллельно элементу в режиме измерения напряжения подключается тестер.

Например, чтобы проверить тиристор КУ202Н мультиметром, вначале устанавливается уровень выходного напряжения около двадцати вольт. При этом светодиод в схеме гореть не должен. Затем медленно поднимается уровень до того момента, пока светодиод не загорится. Свечение индикатора свидетельствует о том, что динистор открылся и через него начал проходить электрический ток. Для его закрытия уровень напряжения снижается.

Значение разности потенциалов, при котором происходит изменение режима работы, и является максимальным напряжением открытия. В рассматриваемом случае тестер должен показать значение около 50 вольт, в то время как уровень входного сигнала будет около 60 вольт. Резистор применяется любого типа. Его назначение заключается в том, чтобы ограничить величину тока, проходящего через светодиод.

Зная, как проверить тиристор КУ 202, можно проверить и любой другой тип тиристора, динистора или симистора. Следует отметить, что профессионалы вместо мультиметра используют осциллограф. Совместно с ним применяется тестовая приставка. К гнёздам X5 и X6 подключаются измеряемые элементы. При использовании тиристора его управляющий элемент подключается к гнезду X7. У элементов с управляющим выводом напряжение изменяется с помощью переменного резистора R4. Если радиоэлемент целый, тогда осциллограмма должна быть такой, как на рисунке.

Схема проверки динистора

Для реальной проверки на работоспособность нужно собрать схему проверки динисторов.

Она включает в себя совсем немного компонентов:

  • блок питания с возможностью регулировки напряжения в пределах 30-40 В.
  • резистор 10 кОм.
  • светодиод.
  • подопытный образец — симметричный динистор DB3.

Очень редко в радиолюбителей есть блоки питания с диапазоном регулировки до 40 В, для этих целей можно соединить последовательно два или даже три регулируемых блока питания.

Проверка динистора DB3 начинается со сборки схемы. Устанавливаем выходное напряжение порядка 30 В и постепенно подымаем его немного выше, до момента загорания светодиода. Если светодиод загорелся – динистор уже открыт. При уменьшении напряжения светодиод потухнет – динистор закрыт.

Как проверить динисторДинистор — это важный радиоэлемент в электрических цепях. Предназначен он для схем с автоматической коммутацией устройств, импульсных генераторов, высокочастотных преобразователей сигналов. Из-за невысокой стоимости и простой конструкции такая радиодеталь считается идеальной для использования в регуляторах мощности.

  • Назначение динистора
  • Принцип работы
  • Характеристики устройства
  • Диагностика прибора
    • Прозвонка без выпаивания
    • Тестовая схема

Но как и любой электронный элемент, она может выйти из строя. Поэтому крайне важно уметь правильно проверить динистор мультиметром.

Назначение динистора

Как проверить динистор мультиметромДинистор — это полупроводниковый элемент, обладающий двумя устойчивыми состояниями: закрытым и открытым. Изготавливается он из полупроводникового монокристалла с несколькими p-n переходами. В общем случае его можно рассматривать как электронный ключ, когда одно его состояние (закрытое) соответствует низкой проводимости, а другое (открытое) — высокой.

Динистор относится к «тиристорному семейству» радиоэлементов и не имеет принципиальных различий с тиристором. Единственное, что его отличает — это условия смены устойчивого состояния. В отличие от тиристора, имеющего три вывода, у динистора имеется их только два, то есть у него нет управляющего входа.

Отсюда и второе его название — диодный тиристор. Выводы динистора называются анодом и катодом. Первый выводится из крайней p-области, а второй — из n-области.

Как проверить тиристор ку 202Изобретение тиристоров связывают с именем английского физика Уильяма Брэдфорда Шокли. После изобретения точечного транзистора учёный посвятил свои эксперименты созданию монолитного элемента. Так, в 1949 году был представлен прототип плоскостного транзистора, а уже в следующем году Спаркс и Тил, помощники Шокли, сумели изготовить трёхслойную структуру, позволяющую выпускать высокочастотные радиоэлементы на основе p-n переходов. Исследования учёного привели к созданию полупроводникового диода, названного диодом Шокли. Его конструкция представляет собой четырехслойный элемент со структурой pnpn типа.

В современной электронике динистор чаще всего применяется в схеме запуска энергосберегающих ламп и пускорегулирующих устройств дневного света.

На схемах и в литературе элемент обозначается с помощью латинских букв VD или VS, а за его графическое обозначение принят треугольник вместе с проходящей через его середину прямой линией, символизирующей электрическую цепь. В результате образуется своего рода стрелка, указывающая направление прохождения тока. Перпендикулярно прямой линии посередине и около вершины треугольника рисуются две короткие черты. Первая обозначает базовую область, а вторая — катод.

Принцип работы

Как проверить симистор мультиметром Рассматривая динистор в качестве четырёхструктурного элемента, его можно представить в виде двух взаимосвязанных транзисторов n и p типа проводимости. Для работы транзистора необходимо появление тока на переходе база-эмиттер. Если на него не подано напряжение, тогда через радиоэлемент проходить ток не будет. Связано это с тем, что открытие транзисторов контролируется друг другом. Иными словами, чтобы открыть один из этих транзисторов, необходимо перевести в открытое состояние другой.

Между выводами динистора должно присутствовать напряжение определённой величины, позволяющее перевести работу одного из двух транзисторов в режим насыщения. В результате откроется второй элемент, и динистор начнёт пропускать ток.

Для перевода структуры в режим отсечки тока понадобится понизить величину напряжения, что приведёт к пропаданию тока смещения и, соответственно, тока базы на втором транзисторе. Динистор перестанет пропускать ток.

Существенную роль играет и полярность приложенного к выводам радиодетали напряжения. Когда на анод подаётся минус, через элемент ток практически не проходит. Такое включение называют обратным. Если же полярность поменять, то через устройство начнёт протекать ток небольшой величины — ток закрытия. Напряжение, соответствующее ему, определяет наибольшее значение, при котором динистор находится в закрытом состоянии. Чтобы динистор открыть, понадобится напряжение порядка десятков вольт.

Динисторы, как и тринисторы, пропускают ток только в одном направлении. Чтобы ток проходил в обоих направлениях, они включаются по встречно-параллельной схеме. Также для этого может использоваться пятислойная структура pnpnp типа.

Характеристики устройства

Чтобы правильно проверить тиристор мультиметром, необходимо не только понимать принцип его работы, но и знать основные его характеристики. Наиболее значимым параметром элемента является его вольт-амперная характеристика (ВАХ). Она наглядно показывает зависимость протекания тока через прибор от приложенного к его выводам напряжения. ВАХ динистора относится к S-образному виду. Эту характеристику разделяют на шесть зон:

  1. Участок открытого состояния. На этом промежутке элемент практически не оказывает сопротивления проходящему через него току. Его проводимость максимальная. Эта зона заканчивается точкой, в которой ток перестаёт протекать.
  2. Область отрицательного сопротивления. Провоцирует начало лавинного пробоя.
  3. Пробой коллекторного перехода. На этом промежутке элемент работает в режиме лавинного пробоя, из-за чего происходит резкое уменьшение напряжения на его выводах.
  4. Участок прямого включения. В этой области динистор закрыт, так как разность потенциалов, приложенная к его выводам, меньше, чем необходимая для возникновения пробоя.
  5. Пятый и шестой участки описывают работу прибора в нижней половине ВАХ и соответствуют состояниям обратного включения и пробоя элемента.

Анализируя ВАХ, можно сделать вывод о том, что работа динистора похожа на диод, но, в отличие от последнего, для его открытия необходимо подать напряжение, превышающее диодное значение в несколько раз. При этом динистор характеризуется рядом параметров, определяющих его применение в электрических цепях. К основным его характеристикам относят следующие величины:

  1. Разность потенциалов в открытом состоянии. Обычно указывается применительно к значению тока открытия. В качестве её единицы измерения используется вольт.
  2. Наименьшее значение тока в открытом состоянии. Эта величина зависит от температуры прибора и при её увеличении снижается. Измеряется в миллиамперах.
  3. Время переключения. Характеризуется периодом времени, в течение которого происходит переход режима работы прибора с одного устойчивого состояния в другое. Это значение составляет микросекунды.
  4. Ток запертого состояния. Определяется значением обратного напряжения и редко превышает 500 мкА.
  5. Ёмкость. Этот параметр характеризует обобщённую паразитную ёмкость, возникающую в элементе. Из-за неё ограничивается применение устройства в высокочастотных цепях и снижается скорость переключения режимов работы. Измеряется она в пикофарадах.
  6. Ток удержания. Обозначает величину, при которой динистор открыт. Единица измерения — ампер.

Диагностика прибора

Как проверить симистор мультиметром не выпаивая Осуществляя проверку радиоэлемента на исправность, чаще всего используют мультиметр. Удобство применения этого измерительного прибора объясняется его многофункциональностью. С его помощью можно прозвонить элемент на пробой или измерить уровни пороговых напряжений. При этом неважно, аналоговый или цифровой тип измерителя используется.

Для получения верных результатов измерения понадобится подготовить мультиметр к работе. Вся суть подготовительной операции сводится к проверке элемента питания тестера. При работе с цифровым устройством необходимо обратить внимание на значок мигающей батарейки. Если он есть, значит, элемент питания необходимо заменить. Для аналогового устройства перед работой выполняется установка стрелки в нулевое положение. Если это сделать невозможно, то элемент питания нужно заменить.

Для достоверного результата во время измерения мультиметром также желательно проследить за окружающей температурой. Связанно это с тем, что при увеличении температуры проводимость полупроводников возрастает. Оптимальной для измерения считается температура около 22 °C.

Прозвонка без выпаивания

Из-за специфики устройства проверить симистор мультиметром, не выпаивая, не так уж и просто. Для полной проверки используется электрическая схема, позволяющая провести ряд необходимых измерений. Единственное, что можно сделать с помощью мультиметра, так это проверить его на явный пробой.

Для этого тестер переключается в режим позвонки диодов, после чего измерительными щупами дотрагиваются до выводов динистора. При любой полярности тестер должен показать обрыв, что будет обозначать отсутствие пробоя в элементе. Но это не будет гарантировать исправность прибора. Если при измерении мультиметр покажет короткое замыкание, то такой тиристор можно уже будет дальше не проверять, так как он неисправен.

Как проверить тиристорПри этом следует знать, что прозванивать радиоэлемент в схеме будет некорректно, так как параллельно с его выводом могут быть подключены другие радиоэлементы, влияющие на измерения. Выполняя простую прозвонку, необходимо хотя бы один из вводов динистора отсоединить от печатной платы. Для того чтобы проверить динистор, не выпаивая, можно использовать возможности той схемы, в которой он установлен.

Известно, что радиоэлемент открывается только при подаче на его выводы определённого уровня напряжения, поэтому можно попытаться достичь этого порогового значения.

В этом случае для проверки мультиметр переключается на режим измерения напряжения. В зависимости от предполагаемого напряжения пробоя выбирается диапазон измерения. Измерительные щупы подключаются параллельно к выводам элемента, после чего измеряется уровень сигнала. Если при изменении входного сигнала произойдёт скачок напряжения, то это и будет обозначать напряжение пробоя динистора, то есть его работоспособность.

Тестовая схема

Чтобы получить уверенность в работоспособности элемента, радиолюбители используют тестовые схемы. Они бывают разной степени сложности, что в итоге влияет на точность полученного результата. Самая простая схема состоит из трёх элементов:

  • регулируемого источника питания;
  • резистора;
  • индикатора.

В качестве последнего можно использовать светодиод. Собрав такую схему, приступают к проверке. Параллельно элементу в режиме измерения напряжения подключается тестер.

Как проверить тиристор на исправность Например, чтобы проверить тиристор КУ202Н мультиметром, вначале устанавливается уровень выходного напряжения около двадцати вольт. При этом светодиод в схеме гореть не должен. Затем медленно поднимается уровень до того момента, пока светодиод не загорится. Свечение индикатора свидетельствует о том, что динистор открылся и через него начал проходить электрический ток. Для его закрытия уровень напряжения снижается.

Значение разности потенциалов, при котором происходит изменение режима работы, и является максимальным напряжением открытия. В рассматриваемом случае тестер должен показать значение около 50 вольт, в то время как уровень входного сигнала будет около 60 вольт. Резистор применяется любого типа. Его назначение заключается в том, чтобы ограничить величину тока, проходящего через светодиод.

Как прозвонить тиристор

Зная, как проверить тиристор КУ 202, можно проверить и любой другой тип тиристора, динистора или симистора. Следует отметить, что профессионалы вместо мультиметра используют осциллограф. Совместно с ним применяется тестовая приставка. К гнёздам X5 и X6 подключаются измеряемые элементы. При использовании тиристора его управляющий элемент подключается к гнезду X7. У элементов с управляющим выводом напряжение изменяется с помощью переменного резистора R4. Если радиоэлемент целый, тогда осциллограмма должна быть такой, как на рисунке.

Динистор DB3 является двунаправленным диодом (триггер-диод), который специально создан для управления симистором или тиристором. В основном своем состоянии динистор DB3 не проводит через себя ток (не считая незначительный ток утечки) до тех пор, пока к нему не будет приложено напряжение пробоя.

В этот момент динистор переходит в режим лавинного пробоя и у него проявляется свойство отрицательного сопротивления. В результате этого на динисторе DB3 происходит падение напряжения в районе 5 вольт, и он начинает пропускать через себя ток, достаточный для открытия симистора или тиристора.

Диаграмма вольт-амперной характеристики динистора DB3 изображена ниже:

ВАХ динистора DB3

Hantek 2000 — осциллограф 3 в 1

Портативный USB осциллограф, 2 канала, 40 МГц….

Подробнее

Как графически обозначается динистор на схеме

Четкого стандарта, регламентирующего изображение этого элемента на схеме, не существует. Самый распространенный вариант – изображение диода + дополнительная перпендикулярная черта. На зарубежных описаниях этот элемент может обозначаться словами trigger diode, буквами VD, VS, V, D.

Условное графическое изображение симметричных динисторов имеет несколько вариантов.

Маркировка, наносимая на корпус динистора, состоит из букв и цифр. Наиболее популярны устройства российского производства КН102 (А…И). Первая буква в обозначении характеризует материал, из которого изготовлено устройство. К – кремний. Число из трех цифр обозначает номер разработки. Буквы, стоящие в конце маркировки, являются буквенными кодами напряжения включения.

Универсальный тестер проверки DB3, оптронов, стабилитронов и других компонентов

Мне в последнее время приходилось возиться с разными электронными балластами и в их составе с динистором DB3, оптронами и стабилитронами из других устройств. Поэтому для быстрой проверки этих компонентов пришлось разработать и изготовить специализированный тестер. Дополнительно, кроме динисторов и оптронов, чтобы не создавать ещё тестеры для подобных компонентов, тестер может проверять стабилитроны, светодиоды, диоды, переходы транзисторов. В нём использована световая и звуковая индикация и дополнительно цифровой измеритель напряжения для оценки уровня срабатывания динисторов и падения напряжения на переходе проверяемых стабилитронов, диодов, светодиодов, транзисторов.

! Примечание: Все права на схему и конструкцию принадлежат мне, Анатолию Беляеву.

Особенности устройства полупроводникового неуправляемого тиристора

Структура динистора четырехслойная с тремя p-n-переходами. Эмиттерные переходы прямого направления – p-n1 и p-n3, переход p-n2 – коллекторный, обратной направленности, обладает высоким сопротивлением. Выводы:

  • анод – выводится из p-области;
  • катод – выводится из n-области.

Отличие динистора от диода – количество p-n-переходов (у диода один p-n-переход), от обычного тиристора – отсутствие третьего, управляющего, входа.

Основные плюсы trigger diode:

  • обеспечение несущественной потери мощности;
  • возможность эксплуатации в широком температурном интервале – -40…+125°C;
  • возможность получения высокого выходного напряжения.

Минус – отсутствие возможности управлять работой этого устройства.

Виды динисторов

В зависимости от конструктивных особенностей различают следующие виды этих устройств:

  • Однополярные. Функционируют только при положительном смещении. Если уровень максимально допустимого обратного напряжения будет превышен, элемент сгорит.
  • Симметричные. Имеют равнозначные выводы, могут работать при прямом и обратном смещениях. В современной электронике широко применяются реверсивно-включаемые мощные динисторы (РВД). Эти элементы с реверсивно-импульсивными свойствами способны осуществить коммутацию токов до 500 кА в микросекундном или субмиллисекундном диапазонах. Они используются для коммутации импульсных токов в твердотельных ключах в схемах электропитания силовых агрегатов.

Основные характеристики динисторов

При выборе подходящего динистора учитывают следующие параметры:

  • Разность потенциалов в открытом состоянии, измеряется в вольтах. Указывается применительно к величине тока открытия.
  • Наименьшая величина тока в открытом состоянии, единица измерения – миллиамперы. Эта характеристика зависит от температуры устройства. С ее повышением значение минимального тока уменьшается.
  • Время переключения – временной промежуток, составляющий микросекунды, в течение которого триггер-диод переходит из одного устойчивого состояния в другое.
  • Ток запертого состояния. Зависит от значения обратного напряжения. В общем случае его величина не превышает 500 мкА.
  • Емкость. Измеряется в пикофарадах, характеризует общую паразитную емкость устройства. Если этот показатель высокий, то элемент в высокочастотных цепях не используется.

Схема работы динистора

Основной принцип работы динистора: пропускание тока начинается при достижении определенного значения напряжения, которое является постоянным и не может быть изменено, поскольку триггер-диоды является неуправляемым.

Наглядное представление о том, как работает динистор, дает вольтамперная характеристика (ВАХ). На ВАХ симметричного элемента видно, что он будет функционировать при любом направлении прикладываемого напряжении. Верхняя и нижняя ветви центрально симметричны. Такую деталь можно включать в схему без учета полярности.

Схема работы динистора

На графике изображены 3 возможных рабочих режима:

  • Красный участок – закрытое состояние, при котором значение текущего напряжения ниже напряжения включения. Ток через триггер-диод не проходит.
  • Синий – характеризует момент включения, когда напряжение на выводах достигает напряжения включения и элемент включается.
  • Зеленый – открытое состояние, при котором характеристики элемента стабилизированы. В характеристиках на триггер-диод указывается наибольшее значение тока, который может через него протекать.

Несимметричные dinistor можно включать в схему только с соблюдением полярности. При обратном подсоединении элемент будет закрыт при напряжениях, не превышающих допустимое значение, при их превышении деталь сгорит.

По схеме функционирования триггер-диод похож на классический диод, но есть существенное отличие. Если напряжение открытия для диода очень мало и составляет десятки и сотни милливольт, то для динистора напряжение включения составляет несколько десятков вольт. Для закрытия устройства ток, проходящий через него, необходимо понизить до значения, которое меньше величины тока удержания, или разомкнуть цепь электропитания.

Режим прямого запирания

При прямом запирании напряжение на аноде положительно по отношению к катоду и обратно смещён только переход J2. Переходы J1 и J3 смещены в прямом направлении. Большая часть приложенного напряжения падает на переходе J2. Через переходы J1 и J3 в области, примыкающие к переходу J2, инжектируются неосновные носители, которые уменьшают сопротивление перехода J2, увеличивают ток через него и уменьшают падение напряжения на нём. При повышении прямого напряжения ток через тиристор сначала растёт медленно, что соответствует участку 0-1 на ВАХ.

В этом режиме тиристор можно считать запертым, так как сопротивление перехода J2 всё ещё очень велико. По мере увеличения напряжения на тиристоре снижается доля напряжения, падающего на J2, и быстрее возрастают напряжения на J1 и J3, что вызывает дальнейшее увеличение тока через тиристор и усиление инжекции неосновных носителей в область J2. При некотором значении напряжения (порядка десятков или сотен вольт), называется напряжением переключения VBF (точка 1 на ВАХ), процесс приобретает лавинообразный характер, тиристор переходит в состояние с высокой проводимостью (включается), и в нём устанавливается ток, определяемый напряжением источника и сопротивлением внешней цепи.

Как проверить работоспособность динистора

Этот элемент выходит строя очень редко. С использованием мультиметра динистор из-за его технических особенностей проверить невозможно, поэтому для проведения детальной проверки собирают несложную тестовую схему.

Как проверить работоспособность динистора

В проверочную схему входят:

Для сборки этой схемы понадобятся: резистор сопротивлением 10 кОм, светодиод для светоиндикации, проверяемый элемент, лабораторный источник питания с возможностью регулировать постоянное напряжение в интервале 30-40 В. Если имеются только маломощные ИП c регулировкой, то их включают в цепь последовательным соединением.

Этапы проверки:

  • Задают исходное напряжение 30 В, которое медленно повышают до загорания светодиода, означающего открытие элемента.
  • Отмечают напряжение, при котором загорелся светодиодный индикатор, и вычитают разность потенциалов, расходуемую на светодиод.
  • По справочнику проверяют нормативный интервал напряжений включений для проверяемого динистора. Если полученное в результате тестирования значение входит в этот диапазон, значит, устройство полностью исправно.

При включении однонаправленного динистора в тестовую схему необходимо соблюдать полярность.

Диагностика прибора

Осуществляя проверку радиоэлемента на исправность, чаще всего используют мультиметр. Удобство применения этого измерительного прибора объясняется его многофункциональностью. С его помощью можно прозвонить элемент на пробой или измерить уровни пороговых напряжений. При этом неважно, аналоговый или цифровой тип измерителя используется.

Для получения верных результатов измерения понадобится подготовить мультиметр к работе. Вся суть подготовительной операции сводится к проверке элемента питания тестера. При работе с цифровым устройством необходимо обратить внимание на значок мигающей батарейки. Если он есть, значит, элемент питания необходимо заменить. Для аналогового устройства перед работой выполняется установка стрелки в нулевое положение. Если это сделать невозможно, то элемент питания нужно заменить.

Для достоверного результата во время измерения мультиметром также желательно проследить за окружающей температурой. Связанно это с тем, что при увеличении температуры проводимость полупроводников возрастает. Оптимальной для измерения считается температура около 22 °C.

Прозвонка без выпаивания

Из-за специфики устройства проверить симистор мультиметром, не выпаивая, не так уж и просто. Для полной проверки используется электрическая схема, позволяющая провести ряд необходимых измерений. Единственное, что можно сделать с помощью мультиметра, так это проверить его на явный пробой.

Для этого тестер переключается в режим позвонки диодов, после чего измерительными щупами дотрагиваются до выводов динистора. При любой полярности тестер должен показать обрыв, что будет обозначать отсутствие пробоя в элементе. Но это не будет гарантировать исправность прибора. Если при измерении мультиметр покажет короткое замыкание, то такой тиристор можно уже будет дальше не проверять, так как он неисправен.

При этом следует знать, что прозванивать радиоэлемент в схеме будет некорректно, так как параллельно с его выводом могут быть подключены другие радиоэлементы, влияющие на измерения. Выполняя простую прозвонку, необходимо хотя бы один из вводов динистора отсоединить от печатной платы. Для того чтобы проверить динистор, не выпаивая, можно использовать возможности той схемы, в которой он установлен.

Известно, что радиоэлемент открывается только при подаче на его выводы определённого уровня напряжения, поэтому можно попытаться достичь этого порогового значения.

В этом случае для проверки мультиметр переключается на режим измерения напряжения. В зависимости от предполагаемого напряжения пробоя выбирается диапазон измерения. Измерительные щупы подключаются параллельно к выводам элемента, после чего измеряется уровень сигнала. Если при изменении входного сигнала произойдёт скачок напряжения, то это и будет обозначать напряжение пробоя динистора, то есть его работоспособность.

Тестовая схема

Чтобы получить уверенность в работоспособности элемента, радиолюбители используют тестовые схемы. Они бывают разной степени сложности, что в итоге влияет на точность полученного результата. Самая простая схема состоит из трёх элементов:

  • регулируемого источника питания;
  • резистора;
  • индикатора.

В качестве последнего можно использовать светодиод. Собрав такую схему, приступают к проверке. Параллельно элементу в режиме измерения напряжения подключается тестер.

Например, чтобы проверить тиристор КУ202Н мультиметром, вначале устанавливается уровень выходного напряжения около двадцати вольт. При этом светодиод в схеме гореть не должен. Затем медленно поднимается уровень до того момента, пока светодиод не загорится. Свечение индикатора свидетельствует о том, что динистор открылся и через него начал проходить электрический ток. Для его закрытия уровень напряжения снижается.

Значение разности потенциалов, при котором происходит изменение режима работы, и является максимальным напряжением открытия. В рассматриваемом случае тестер должен показать значение около 50 вольт, в то время как уровень входного сигнала будет около 60 вольт. Резистор применяется любого типа. Его назначение заключается в том, чтобы ограничить величину тока, проходящего через светодиод.

Как прозвонить тиристор

Зная, как проверить тиристор КУ 202, можно проверить и любой другой тип тиристора, динистора или симистора. Следует отметить, что профессионалы вместо мультиметра используют осциллограф. Совместно с ним применяется тестовая приставка. К гнёздам X5 и X6 подключаются измеряемые элементы. При использовании тиристора его управляющий элемент подключается к гнезду X7. У элементов с управляющим выводом напряжение изменяется с помощью переменного резистора R4. Если радиоэлемент целый, тогда осциллограмма должна быть такой, как на рисунке.

Динистор – неуправляемая разновидность тиристоров, иначе он называется триггер-диодом. Изготавливается из полупроводникового монокристалла, имеющего несколько p-n переходов. Обладает двумя устойчивыми состояниями: открытым и закрытым. Подходят для применения в цепях непрерывного действия, в которых наибольшее значение тока составляет 2 А, а также в импульсных режимах, при условии, что максимальный ток – 10А, а напряжения находятся в диапазоне 10-200 В. Этот элемент обычно выполняет функции электронного ключа. Его открытое положение соответствует высокой проводимости, закрытое – низкой. Переход из открытого в закрытое состояние происходит практически мгновенно.

Как графически обозначается динистор на схеме

Четкого стандарта, регламентирующего изображение этого элемента на схеме, не существует. Самый распространенный вариант – изображение диода + дополнительная перпендикулярная черта. На зарубежных описаниях этот элемент может обозначаться словами trigger diode, буквами VD, VS, V, D.

Условное графическое изображение симметричных динисторов имеет несколько вариантов.

Маркировка, наносимая на корпус динистора, состоит из букв и цифр. Наиболее популярны устройства российского производства КН102 (А…И). Первая буква в обозначении характеризует материал, из которого изготовлено устройство. К – кремний. Число из трех цифр обозначает номер разработки. Буквы, стоящие в конце маркировки, являются буквенными кодами напряжения включения.

Особенности устройства полупроводникового неуправляемого тиристора

Структура динистора четырехслойная с тремя p-n-переходами. Эмиттерные переходы прямого направления – p-n1 и p-n3, переход p-n2 – коллекторный, обратной направленности, обладает высоким сопротивлением. Выводы:

  • анод – выводится из p-области;
  • катод – выводится из n-области.

Отличие динистора от диода – количество p-n-переходов (у диода один p-n-переход), от обычного тиристора – отсутствие третьего, управляющего, входа.

Основные плюсы trigger diode:

  • обеспечение несущественной потери мощности;
  • возможность эксплуатации в широком температурном интервале – -40…+125°C;
  • возможность получения высокого выходного напряжения.

Минус – отсутствие возможности управлять работой этого устройства.

Виды динисторов

В зависимости от конструктивных особенностей различают следующие виды этих устройств:

  • Однополярные. Функционируют только при положительном смещении. Если уровень максимально допустимого обратного напряжения будет превышен, элемент сгорит.
  • Симметричные. Имеют равнозначные выводы, могут работать при прямом и обратном смещениях. В современной электронике широко применяются реверсивно-включаемые мощные динисторы (РВД). Эти элементы с реверсивно-импульсивными свойствами способны осуществить коммутацию токов до 500 кА в микросекундном или субмиллисекундном диапазонах. Они используются для коммутации импульсных токов в твердотельных ключах в схемах электропитания силовых агрегатов.

Режим обратного запирания

Два основных фактора ограничивают режим обратного пробоя и прямого пробоя:

Будет интересно➡ Как работает диод с барьером Шоттки

– Лавинный пробой.

– Прокол обеднённой области.

В режиме обратного запирания к аноду прибора приложено напряжение, отрицательное по отношению к катоду; переходы J1 и J3 смещены в обратном направлении, а переход J2 смещён в прямом. В этом случае большая часть приложенного напряжения падает на одном из переходов J1 или J3 (в зависимости от степени легирования различных областей). Пусть это будет переход J1. В зависимости от толщины Wn1 слоя n1 пробой вызывается лавинным умножением (толщина обеднённой области при пробое меньше Wn1) либо проколом (обеднённый слой распространяется на всю область n1, и происходит смыкание переходов J1 и J2).

Интересно почитать: инструкция как прозвонить транзистор.

Основные характеристики динисторов

При выборе подходящего динистора учитывают следующие параметры:

  • Разность потенциалов в открытом состоянии, измеряется в вольтах. Указывается применительно к величине тока открытия.
  • Наименьшая величина тока в открытом состоянии, единица измерения – миллиамперы. Эта характеристика зависит от температуры устройства. С ее повышением значение минимального тока уменьшается.
  • Время переключения – временной промежуток, составляющий микросекунды, в течение которого триггер-диод переходит из одного устойчивого состояния в другое.
  • Ток запертого состояния. Зависит от значения обратного напряжения. В общем случае его величина не превышает 500 мкА.
  • Емкость. Измеряется в пикофарадах, характеризует общую паразитную емкость устройства. Если этот показатель высокий, то элемент в высокочастотных цепях не используется.

Устройства, их аналоги и тиристоры

Наряду с приборами, предназначенными для линейного усиления сигналов, в электронике, в вычислительной технике и особенно в автоматике широкое применение находят приборы с падающим участком вольт-амперной характеристики. Эти приборы чаще всего выполняют функции электронного ключа и имеют два состояния: закрытое, характеризующееся высоким сопротивлением; и открытое, характеризующееся минимальным сопротивлением.

Динистор

В результате переходы Πι и П3 окажутся в прямом направлении, а переход П2 — в обратном. В результате получится, что в одном приборе как бы сочетаются два транзистора. Наличие отрицательного участка на характеристике динистора обусловлено той же причиной, что и у лавинного транзистора: у обоих приборов на этом участке задан постоянный ток базы, причем у динистора он равен нулю.

Предпочтением пользуются кремниевые динисторы, так как у них коэффициент инжекции при малых токах близок к нулю и с ростом тока увеличивается весьма медленно. Еще одним преимуществом кремниевого прибора является малая величина тока в запертом состоянии. Вместе с тем кремниевые переходы характеризуются большой величиной падения прямого напряжения на переходе и большим сопротивлением слоев. Это ухудшает параметры динистора в открытом состоянии.

Аналог динистора

Если в устройстве нет возможности установить требуемый динис- тор, можно пойти по другому пути и собрать схему. В данном случае роль основного проводящего элемента играет тринистор VS1 (КУ221), электрические параметры которого определяют характеристики аналога динистора. Момент открывания зависит от стабисто- ра VD1, а обратный ток — от диода VD2. Такой аналог может быть использован в радиолюбительских разработках различной сложности и стать настоящей палочкой-выручалочкой при отсутствии нужного динистора. Данный узел имеет следующие электрические характеристики: напряжение до 120 В и ток до 0.8 А. Эти характеристики будет иными, если в схеме будут использованы другие элементы, например тиристор КУ202Л. Такая схема включения элементов является универсальной.

Будет интересно➡ Что такое тиристоры?

В практике радиолюбителя возможны случаи, когда требуется замена популярного динистора КН102Ж (или с другим буквенным индексом). Так, при необходимости использовать аналог в электрических цепях с большим напряжением, например в цепи осветительной сети 220 В, сопротивление резистора Ri увеличивают до 1 кОм, ста- бистор заменяют на КС620А. Если в запасе не окажется нужного три- нистора (типа КУ201, КУ202, КУ221 и аналогичных по электрическим характеристикам), его заменяют тиристором КУ101Д. Кроме того, если под рукой не окажется динистора КН102Ж, его можно заменить последовательной цепью динисторов серии КН102 (или аналогичных) с меньшим напряжением включения. Динистор КН102Ж открывается при напряжении 130…150В. Это следует учитывать при замене аналоговой схемой или цепочкой динисторов.

Вообще, одной из причин популярности динисторов, используемых в электронных узлах с большим напряжением, является конкурентоспособность этого прибора по сравнению со стабилитроном: найти стабилитроны на высокое напряжение не просто, да и стоимость такого прибора достаточно высока. Кроме того, падение напряжения на динисторе во включенном состоянии невелико, а рассеиваемая мощность (и рост температуры) значительно меньше, чем при установке стабилитрона.

Электронные устройства с динисторами (многие из этих устройств являются источниками питания и преобразователями напряжения) имеют такие преимущества; как малая рассеиваемая мощность и высокая стабильность выходного напряжения. Одним из недостатков является ограниченный выбор выходных напряжений, обусловленный напряжением включения (открывания) динисторов. Устранение этого недостатка — задача разработчиков и производителей современной элементной базы динисторов.

Это интересно! Все о полупроводниковых диодах.

Тиристор

Снабдим одну из баз динистора, например щ, внешним выводом и используем этот третий электрод для задания дополнительного тока через переход р-щ. Для реальных четырехслойных структур характерна различная толщина баз. В качестве управляющей используется база, у которой коэффициент передачи оц близок к единице. В этом случае прибор будет обладать свойствами тиратрона. Для такого прибора, или тиристора, используется та же терминология, что и для обычного транзистора: выходной ток называется коллекторным, а управляющий — базовым. Эмиттером считается слой, примыкающий к базе, хотя с физической точки зрения эмиттером является и второй внешний слой, в данном случае — п2.

При увеличении управляющего тока Iq напряжение прямого переключения уменьшается, отчасти возрастает ток прямого переключения и уменьшается ток обратного переключения. В результате отдельные кривые с ростом тока 1(, как бы «вписываются» друг в друга вплоть до полного исчезновения отрицательного участка (такую кривую называют спрямленной характеристикой).

Мощные тиристоры используются в качестве контакторов, коммутаторов тока, а также в преобразователях постоянного напряжения, инверторах и выпрямительных схемах с регулируемым выходным напряжением. Время переключения у тиристоров значительно меньше, чем у тиратронов. Даже у мощных приборов (с токами в десятки ампер и больше) время прямого переключения составляет около 1 мкс, а время обратного переключения не превышает 10…20 мкс.

Будет интересно➡ Диод 1n4007: характеристики, маркировка и datasheets

Наряду с конечной длительностью фронтов напряжения и тока имеют место задержки фронтов по отношению к моменту подачи управляющего импульса. Наряду с мощными тиристорами разрабатываются и маломощные высокочастотные варианты. В таких приборах время прямого переключения составляет десятки, а время обратного переключения — сотни наносекунд. Столь высокое быстродействие обеспечивается малой толщиной слоев и наличием электрического поля в толстой базе. Маломощные быстродействующие тиристоры используются в различных спусковых и релаксационных схемах.

Схема работы динистора

Основной принцип работы динистора: пропускание тока начинается при достижении определенного значения напряжения, которое является постоянным и не может быть изменено, поскольку триггер-диоды является неуправляемым.

Наглядное представление о том, как работает динистор, дает вольтамперная характеристика (ВАХ). На ВАХ симметричного элемента видно, что он будет функционировать при любом направлении прикладываемого напряжении. Верхняя и нижняя ветви центрально симметричны. Такую деталь можно включать в схему без учета полярности.

Схема работы динистора

На графике изображены 3 возможных рабочих режима:

  • Красный участок – закрытое состояние, при котором значение текущего напряжения ниже напряжения включения. Ток через триггер-диод не проходит.
  • Синий – характеризует момент включения, когда напряжение на выводах достигает напряжения включения и элемент включается.
  • Зеленый – открытое состояние, при котором характеристики элемента стабилизированы. В характеристиках на триггер-диод указывается наибольшее значение тока, который может через него протекать.

Несимметричные dinistor можно включать в схему только с соблюдением полярности. При обратном подсоединении элемент будет закрыт при напряжениях, не превышающих допустимое значение, при их превышении деталь сгорит.

По схеме функционирования триггер-диод похож на классический диод, но есть существенное отличие. Если напряжение открытия для диода очень мало и составляет десятки и сотни милливольт, то для динистора напряжение включения составляет несколько десятков вольт. Для закрытия устройства ток, проходящий через него, необходимо понизить до значения, которое меньше величины тока удержания, или разомкнуть цепь электропитания.

Как проверить работоспособность динистора

Этот элемент выходит строя очень редко. С использованием мультиметра динистор из-за его технических особенностей проверить невозможно, поэтому для проведения детальной проверки собирают несложную тестовую схему.

Как проверить работоспособность динистора

В проверочную схему входят:

Для сборки этой схемы понадобятся: резистор сопротивлением 10 кОм, светодиод для светоиндикации, проверяемый элемент, лабораторный источник питания с возможностью регулировать постоянное напряжение в интервале 30-40 В. Если имеются только маломощные ИП c регулировкой, то их включают в цепь последовательным соединением.

Этапы проверки:

  • Задают исходное напряжение 30 В, которое медленно повышают до загорания светодиода, означающего открытие элемента.
  • Отмечают напряжение, при котором загорелся светодиодный индикатор, и вычитают разность потенциалов, расходуемую на светодиод.
  • По справочнику проверяют нормативный интервал напряжений включений для проверяемого динистора. Если полученное в результате тестирования значение входит в этот диапазон, значит, устройство полностью исправно.

При включении однонаправленного динистора в тестовую схему необходимо соблюдать полярность.

РЕГУЛИРУЕМЫЙ АНАЛОГ ДИНИСТОРА

» Каталог принципиальных схем » Источники питания

Серийно выпускаемые динисторы по электрическим параметрам не всегда отвечают творческим интересам радиолюбителей-конструкторов. Нет, например, динисторов с напряжением включения 5…10 и 200…400 В. Все динисторы имеют значительный разброс значения этого классификационного параметра, который к тому же зависит еще от температуры окружающей среды. Кроме того, они рассчитаны на сравнительно малый коммутируемый ток (менее 0,2 А), а значит, небольшую коммутируемую мощность. Исключено плавное регулирование напряжения включения, что ограничивает область применения динисторов. Все это заставляет радиолюбителей прибегать к созданию аналогов динисторов с желаемыми параметрами.

Поиском такого аналога динистора длительное время занимался и я. Исходным был вариант аналога, составленный из стабилитрона Д814Д и тринистора КУ202Н (рис. 1). Пока напряжение на аналоге меньше напряжения стабилизации стабилитрона, аналог закрыт и ток через него не течет. При достижении напряжения стабилизации стабилитрона он открывается сам, открывает тринистор и аналог в целом. В результате в цепи, в которую аналог включен, появляется ток. Значение этого тока определяется свойствами тринистора и сопротивлением нагрузки. Используя тринисторы серии КУ202 с бук венными индексами Б, В, Н и один и т же стабилитрон Д814Д, произведено 32 измерения тока и напряжения включения аналога дннистора. Анализ показывает, что среднее значение тока включения аналога равно примерно 7 мА, а напряжения включения — 14,5±1 В. Разброс напряжения включения объясняется неодинаковостью сопротивления управляющих р-п переходов используемых тринисторов.

Напряжение включения Uвкл такого аналога можно рассчитать по упрощенной формуле: Uвкл=Uст+Uy.э., где Uст — напряжение стабилизации стабилитрона, Uу.э. — падение напряжения на управляющем переходе тринистора.

При изменении температуры тринистора падение напряжения на его управляющем переходе тоже изменяется, но незначительно. Это приводит к некоторому изменению напряжения включения аналога. Например, для тринистора КУ202Н при изменении температуры его корпуса от 0 до 50 °С напряжение включения изменялось в пределах 0,3…0,4 % по отношению к значению этого параметра при температуре 25 °С.

Далее был исследован регулируемый аналог динистора с переменным резистором R1 в цепи управляющего электрода тринистора (рис. 2). Семейство вольт-амперных характеристик такого варианта аналога показано на рис. 3, их пусковой участок — на рис. 4, а зависимость напряжения включения от сопротивления резистора — на рис. 5. Как показал анализ, напряжение включения такого аналога прямо пропорционально сопротивлению резистора. Это напряжение можно рассчитать по формуле Uвкл.p=Ucт+Uy.э.+Iвкл.y.э*R1, где Uвкл.p — напряжение включения регулируемого аналога, Iвкл.y.э — ток включения регулируемого аналога динистора по управляющему электроду.

рис. 3 рис. 4 рис. 5

Такой аналог свободен практически от всех недостатков динисторов, кроме температурной нестабильности. Как известно, при повышении температуры тринистора его ток включения уменьшается. В регулируемом аналоге это приводит к уменьшению напряжения включения и тем значительнее, чем больше сопротивление резистора. Поэтому стремиться к большому повышению напряжения включения переменным резистором не следует, чтобы не ухудшать температурную’ стабильность работы аналога.

Как показали эксперименты, эта нестабильность небольшая. Так, для аналога с тринистором КУ202Н при изменении температуры его корпуса в пределах 20±10 °С напряжение включения изменялось: с резистором 1 кОм — на ±1,8 %. при 2 кОм — на ±2,6 %, при 3 кОм — на ±3 %, при 4 кОм — на ±3,8 %. Увеличение сопротивления на 1 кОм приводило к повышению напряжения порога включения регулируемого аналога в среднем на 20 % по сравнению с напряжением включения исходного аналога динистора. Следовательно, средняя точность напряжения включения регулируемого аналога лучше 5%.

Температурная нестабильность аналога с тринистором КУ101Г меньше, что объясняется относительно малым током включения (0,8…1,5 мА). Например, при таком же изменении температуры и резисторе сопротивлением 10, 20, 30 и 40 кОм температурная нестабильность была соответственно ±0,6%. ±0,7%, ±0,8%. ±1%. Увеличение сопротивления резистора на каждые 10 кОм повышало уровень напряжения включения аналога на 24 % по сравнению с напряжением аналога без резистора. Таким образом, аналог с тринистором КУ101Г обладает высокой точностью напряжения включения — его температурная нестабильность менее 1%, а с тринистором КУ202Н — несколько худшей точностью напряжения включения (в этом случае сопротивление резистора Rt должно быть 4,7 кОм).

При обеспечении теплового контакта между тринистором и стабилитроном температурная нестабильность аналога может быть еще меньшей, поскольку у стабилитронов с напряжением стабилизации больше 8 В температурный коэффициент напряжения стабилизации положителен, а температурный коэффициент напряжения открывания тринисторов отрицателен.

Повысить термостабильность регулируемого аналога динистора с мощным тринистором можно включением переменного резистора в анодную цепь маломощного тринистора (рис. 6). Резистор R1 ограничивает ток управляющего электрода тринистора VS1 и повышает напряжение включения его на 1…2%. А переменный резистор R2 позволяет регулировать напряжение включения тринистора VS2.

рис. 6

Улучшение температурной стабильности такого варианта аналога объясняется тем, что с увеличением сопротивления резистора R2 уменьшается ток включения аналога по управляющему электроду и увеличивается ток включения его по аноду. А так как с изменением температуры в этом случае ток управляющего электрода уменьшается меньше и что суммарный ток включения аналога увеличивается, то для эквивалентного повышения напряжения включения аналога нужно меньшее сопротивление резистора R2 — это и создает благоприятные условия для повышения температурной стабильности аналога.

Чтобы реализовать термостабильность такого аналога, ток открывания тринистора VS2 должен быть 2…3 мА —больше тока открывания тринистора VS1, чтобы его температурные изменения не влияли на работу аналога. Эксперимент показал, что напряжение включения термостабильного аналога при изменении температуры его элементов от 20 до 70 °С практически не изменилось.

Недостаток такого варианта аналога динистора — сравнительно узкие пределы регулировки напряжения включения переменным резистором R2. Они тем уже, чем больше ток включения тринистора VS2. Поэтому, чтобы не ухудшать термостабильность аналога, надо использовать в нем тринисгоры с возможно меньшим током включения. Диапазон регулировки напряжения включения аналога можно расширить путем применения стабилитронов с различным напряжением стабилизации.

Регулируемые аналоги динистора найдут применение в автоматике и телемеханике, релаксационных генераторах. электронных регуляторах, пороговых и многих других радиотехнических устройствах.

Источник: РАДИО № 3, 1986 г., с.41-42 Автор: М. МАРЬЯШ

Понравилась статья? Поделить с друзьями:
  • Как позвонить димдимычу
  • Как позвонить дилеру триколор тв
  • Как позвонить диван тв
  • Как позвонить диана тур
  • Как позвонить ди каприо