Как позвонить bt134

Сегодня я вам расскажу об очень полезной схеме, которая пригодится как в лаборатории, так и в хозяйстве. Устройство, о котором пойдет речь, называется симисторный регулятор мощности. Регулятор можно применить для плавной регулировки яркостью освещения, температуры паяльника, оборотами электродвигателя (переменного тока). Мой вариант применения регулятора интересней, я плавно регулирую температуру нагрева тэна мощностью 1кВт в самогонном аппарате. Да-да, я занимаюсь этим благородным делом.

Работа схемы описана в статье «Диммер своими руками».

Рабочая температура кристалла симистора от -40 до +125 градусов Цельсия. Необходимо сделать хорошее охлаждение. У меня нагрузка 1кВт, соответственно ток нагрузки около 5А, радиатор площадью 200см кв. греется от 85 до90 градусов Цельсия при длительной работе (до 6ч). Планирую увеличить рабочую площадь радиатора, чтобы повысить надежность устройства.

Симистор имеет управляющий вывод и два вывода, через которые проходит ток нагрузки. Эти два вывода можно менять местами ничего страшного не случиться.

Для безопасности (чтобы не щелкнуло током), симистор необходимо устанавливать на радиатор через диэлектрическую прокладку (полимерную или слюдяную) и диэлектрическую втулку.

Компоненты.

Резистор 4.7кОм мощностью 0,25Вт. Динистор с маркировкой DB3 , полярности не имеет, впаивать любой стороной. Конденсатор пленочный на 100нФ 400В полярности не имеет.

  • Симисторы217

Светодиод любого цвета диаметром 3мм, обратное напряжение 5В, ток 25мА. Короче любой светодиод 3мм. Светодиод дает индикацию нагрузки, не пугайтесь, если при первом включении (естественно без нагрузки) он светиться не будет.

Первое включение необходимо производить кратковременно без нагрузки. Если все нормально, никакие элементы не греются, ничего не щелкнуло, тогда включаем без нагрузки на 15 секунд. Далее цепляем лампу напряжением 220В и мощностью 60-200Вт, крутим ручку переменного резистора и наслаждаемся работой.

Для защиты я установил в разрыв сетевого провода (220В) предохранитель на 12А.

Собранный нами регулятор мощности на симисторе BTA12-600 можно применить для регулировки температуры паяльника (регулируя мощность), тем самым получив паяльную станцию для вашей мастерской.

Печатная плата регулятора мощности на симисторе BTA12-600 СКАЧАТЬ

Даташит на BTA12-600 СКАЧАТЬ

В электронных схемах различных приборов довольно часто используются полупроводниковые устройства – симисторы. Их применяют, как правило, при сборке схем регуляторов. В случае неисправности электроприбора может возникнуть необходимость проверить симистор. Как это сделать?

Зачем нужна проверка

В процессе ремонта или сборки новой схемы невозможно обойтись без электрических деталей. Одной из таких деталей является симистор. Его применяют в схемах устройств сигнализации, световых регуляторах, радиоприборах и многих отраслях техники. Иногда его применяют повторно после демонтажа неработающих схем, и нередко приходится встречать элемент с утраченной от длительного использования или хранения маркировкой. Случается, что и новые детали надо проверить.

Как же быть уверенным, что симистор, установленная в схему, действительно исправен, и в будущем не нужно будет затрачивать много времени на отладку работы собранной системы?

  • Обозначение и принцип действия симистора: объяснение для «чайников»

Для этого необходимо знать, как проверить симистор мультиметром или тестером. Но сначала надо понять, что собой представляет данная деталь, и как она работает в электрических схемах.

По сути, симистор является разновидностью тиристора. Название составлено из этих двух слов – «симметричный» и «тиристор».

Применение

Этот тип полупроводниковых элементов первоначально предназначался для применения в производственной сфере, например, для управления электродвигателями станков или других устройств, где требуется плавная регулировка тока. Впоследствии, когда техническая база позволила существенно уменьшить размеры полупроводников, сфера применения симметричных тринисторов существенно расширилась. Сегодня эти устройства используются не только в промышленном оборудовании, а и во многих бытовых приборах, например:

  • зарядные устройства для автомобильных АКБ;
  • бытовое компрессорное оборудования;
  • различные виды электронагревательных устройств, начиная от электродуховок и заканчивая микроволновками;
  • ручные электрические инструменты (шуроповерт, перфоратор и т.д.).

И это далеко не полный перечень.

Одно время были популярны простые электронные устройства, позволяющие плавно регулировать уровень освещения. К сожалению, диммеры на симметричных тринисторах не могут управлять энергосберегающими и светодиодными лампами, поэтому эти приборы сейчас не актуальны.

Разновидности тиристоров

Тиристорами принято называть группу полупроводниковых приборов (триодов), способных пропускать или не пропускать электрический ток в заданном режиме и в определенные промежутки времени. Так создают условия работоспособности схемы в соответствии с ее функциями.

Управление работой тиристоров осуществляется двумя способами:

  • подачей напряжения определенной величины для открытия или закрытия прибора, как в динисторах (диодных тиристорах) – двухэлектродных приборах;
  • подачей импульса тока определенной длительности или величины на управляющий электрод, как в тринисторах и симисторах (триодных тиристорах) – трехэлектродных приборах.

По принципу работы эти приборы различаются на три вида.

Динисторы открываются при достижении напряжения определенной величины между катодом и анодом и остаются открытыми до уменьшения напряжения опять же до установленного значения. В открытом состоянии работают по принципу диода, пропуская ток в одном направлении.

Тринисторы открываются при подаче тока на контакт управляющего электрода и остаются открытыми при положительной разности потенциалов между катодом и анодом. То есть они открыты, пока в цепи существует напряжение. Это обеспечивается наличием тока, сила которого не ниже одного из параметров тринистора – тока удержания. В открытом состоянии также работают по принципу диода.

Симисторы – разновидность тринисторов, которые пропускают ток по двум направлениям, находясь в открытом состоянии. По сути, они представляют пятислойный тиристор.

Запираемые тиристоры – тринисторы и симисторы, которые закрываются при подаче на контакт управляющего электрода тока обратной полярности, нежели та, которая вызвала его открытие.

  • 5 самых популярных схем регуляторов напряжения (РН) 0-220 вольт своими руками

Основные характеристики симисторов BT134

Параметр Обозначение Еди-ница Тип симистора
BT134-500 BT134-600 BT134-800
Максимальное обратное напряжение U обр. В 500 600 800
Макс. повторяющееся импульсное напр. в закрытом состоянии U зс.повт.макс. В 500 600 800
Макс. среднее за период значение тока в открытом состоянии I ос.ср.макс. А 4 4 4
Макс. кратковременный импульсный ток в открытом состоянии I кр.макс. А 25 25 25
Наименьший постоянный ток управления, необходимый для включения симистора I у.от.мин. А 0.025 0.025 0.025

Термостат: принцип работы, устройство, неисправности и проверка

Существенный недостаток тиристоров заключается в том, что это однополупериодные элементы, соответственно, в цепях переменного тока они работают с половинной мощностью. Избавиться от этого недостатка можно используя схему встречно-параллельного включения двух однотипных устройств или установив симистор. Давайте разберемся, что представляет собой этот полупроводниковый элемент, принцип его функционирования, особенности, а также сферу применения и способы проверки.

С помощью тестера

Проверка работоспособности симистора мультиметром или тестером основана на знании принципа работы этого устройства. Конечно же, она не даст полной картины состояния детали, так как невозможно определить рабочие характеристики симистора без сборки электрической схемы и проведения дополнительных измерений. Но часто вполне достаточно будет подтвердить или опровергнуть работоспособность полупроводникового перехода и управления им.

Чтобы проверить деталь, необходимо использовать мультиметр в режиме измерения сопротивления, то есть как омметр. Контакты мультиметра присоединяются к рабочим контактам симистора, при этом значение сопротивления должно стремиться к бесконечности, то есть быть очень большим.

После этого соединяется анод с управляющим электродом. Симистор должен открыться и сопротивление должно упасть почти до нуля. Если все так и произошло, скорее всего, симистор работоспособен.

При разрыве контакта с управляющим электродом симистор должен остаться открытым, но параметров мультиметра может быть недостаточно, что бы обеспечить так называемый ток удержания, при котором прибор остается проводимым.

Устройство можно считать неисправным в двух случаях. Если до появления напряжения на контакте управляющего электрода сопротивление симистора ничтожно мало. И второй случай, если при появлении напряжения на контакте управляющего электрода сопротивление прибора не уменьшается.

Особенности

Биполярные транзисторы: схемы включения. схема включения биполярного транзистора с общим эмиттером

Чтобы иметь полное представление о симметричных тринисторах, необходимо рассказать про их сильные и слабые стороны. К первым можно отнести следующие факторы:

  • относительно невысокая стоимость приборов;
  • длительный срок эксплуатации;
  • отсутствие механики (то есть подвижных контактов, которые являются источниками помех).

В число недостатков приборов входят следующие особенности:

Необходимость отвода тепла, примерно из расчета 1-1,5 Вт на 1 А, например, при токе 15 А величина мощности рассеивания будет около 10-22 Вт, что потребует соответствующего радиатора. Для удобства крепления к нему у мощных устройств один из выводов имеет резьбу под гайку.

  • Устройства подвержены влиянию переходных процессов, шумов и помех;
  • Не поддерживаются высокие частоты переключения.

По последним двум пунктам необходимо дать небольшое пояснение. В случае высокой скорости коммутации велика вероятность самопроизвольной активации устройства. Помеха в виде броска напряжения также может привести к этому результату. В качестве защиты от помех рекомендуется шунтировать прибор RC цепью.

Помимо этого рекомендуется минимизировать длину проводов ведущих к управляемому выводу, или в качестве альтернативы использовать экранированные проводники. Также практикуется установка шунтирующего резистора между выводом T1 (TE1 или A1) и управляющим электродом.

С помощью элемента питания и лампочки

Существует вариант прозвона симистора простейшим тестером, представляющим собой разорванную однолинейную цепь с источником питания и контрольной лампой. Еще для проверки понадобится дополнительный источник питания. В качестве его может быть использован любой элемент питания, например типа АА с напряжением 1,5 В.

Прозванивать деталь нужно в определенном порядке. В первую очередь необходимо соединить контакты тестера с рабочими контактами симистора. Контрольная лампа при этом гореть не должна.

Затем необходимо подать напряжение между управляющим и рабочим электродами с дополнительного источника питания. На рабочий электрод подается полярность, соответствующая полярности подключенного тестера. При подключении контрольная лампа должна загореться. Если переход симистора настроен на соответствующий ток удержания, то лампа должна гореть и при отключении дополнительного источника питания от управляющего электрода до момента отключения тестера.

Так как прибор должен пропускать ток в обоих направлениях, для надежности можно повторить проверку, изменив полярность подключения тестера к симистору на противоположную. Надо проверить работоспособность прибора при обратном направлении тока через полупроводниковый переход.

Если до подачи напряжения на управляющий электрод контрольная лампа загорелась и продолжает гореть, то деталь неисправна. Если при подаче напряжения контрольная лампа не загорелась, симистор также считается неисправным, и использовать его в дальнейшем нецелесообразно.

Симистор, смонтированный на плате, можно проверить, не выпаивая его. Для проверки необходимо только отсоединить управляющий электрод и обесточить всю схему, отключив ее от рабочего источника питания.

Соблюдая эти простейшие правила, можно произвести отбраковку некачественных или отработавших свой ресурс деталей.

МЕНЮ САЙТАГлавная • Авто электроника • Акустика и Звук • Антенны • Бытовая электроника • Разные схемы • Телефония • Электропитание • Цифровая техника • Радиопередатчики, радиостанции • Шпионские штучки и прослушивающие устройства Компании, продающие электронику во Владивостоке, можно найти здесь! Компании, товары и услуги Владивостока Быстрый поиск принципиальных или электрических схем * спиральная антенна для т2 * кр1014кт1а схемы * реле поворотов на тиристоре * трансформатор тпн1-1 * зарядное вз1-5а * цифровая шкала макеевская прошивка * Схема зарядного устройства для аккумуляторов * журнал радио люстра чижевского * Радиосхемы для начинающих * Драгметаллы в ИВ-27МПринципиальные, электрические схемыРАДИО Доска Объявлений

Бесплатные объявления, продам, куплю, цена на РАДИОДЕТАЛИ, АНТЕННЫ, ТРАНСИВЕРЫ, ПРИЕМНИКИ, УСИЛИТЕЛИ и многое другое! Если у Вас есть
принципиальная или электрическая схема
какого-либо интересного устройства, и Вы хотите поделиться
этой схемой бесплатно с другими посетителями, то присылайте её к нам. Послать свою схему сейчасСайт для радиолюбителей : скачать принципиальные электрические схемы бесплатно. Электроника, радиоэлектроника, радиосхемы, схема устройства…

Как проверить работоспособность симистора?

Схема усилителя низкой частоты. классификация и принцип работы унч

В сети можно найти несколько способ, где описан процесс проверки при помощи мультиметра, те, кто описывал их, судя по всему, сами не пробовали ни один из вариантов. Чтобы не вводить в заблуждение, следует сразу заметить, что выполнить тестирование мультиметром не удастся, поскольку не хватит тока для открытия симметричного тринистора. Поэтому, у нас остается два варианта:

  1. Использовать стрелочный омметр или тестер (их силы тока будет достаточно для срабатывания).
  2. Собрать специальную схему.

Алгоритм проверки омметром:

  1. Подключаем щупы прибора к выводам T1 и T2 (A1 и A2).
  2. Устанавливаем кратность на омметре х1.
  3. Проводим измерение, положительным результатом будет бесконечное сопротивление, в противном случае деталь «пробита» и от нее можно избавиться.
  4. Продолжаем тестирование, для этого кратковременно соединяем выводы T2 и G (управляющий). Сопротивление должно упасть примерно до 20-80 Ом.
  5. Меняем полярность и повторяем тест с пункта 3 по 4.

Если в ходе проверки результат будет таким же, как описано в алгоритме, то с большой вероятностью можно констатировать, что устройство работоспособное.

Заметим, что проверяемую деталь не обязательно демонтировать, достаточно только отключить управляющий вывод (естественно, обесточив предварительно оборудование, где установлена деталь, вызывающая сомнение).

Необходимо заметить, что данным способом не всегда удается достоверно проверку, за исключением тестирования на «пробой», поэтому перейдем ко второму варианту и предложим две схемы для тестирования симметричных тринисторов.

Схему с лампочкой и батарейкой мы приводить не будем в виду того, что таких схем достаточно в сети, если вам интересен этот вариант, можете посмотреть его в публикации о тестировании тринисторов. Приведем пример более действенного устройства.

Обозначения:

  • Резистор R1 – 51 Ом.
  • Конденсаторы C1 и С2 – 1000 мкФ х 16 В.
  • Диоды – 1N4007 или аналог, допускается установка диодного моста, например КЦ405.
  • Лампочка HL – 12 В, 0,5А.

Можно использовать любой трансформатор с двумя независимыми вторичными обмотками на 12 Вольт.

Алгоритм проверки:

  1. Устанавливаем переключатели в исходное положение (соответствующее схеме).
  2. Производим нажатие на SB1, тестируемое устройство открывается, о чем сигнализирует лампочка.
  3. Жмем SB2, лампа гаснет (устройство закрылось).
  4. Меняем режим переключателя SA1 и повторяем нажатие на SB1, лампа снова должна зажечься.
  5. Производим переключение SA2, нажимаем SB1, затем снова меня ем положение SA2 и повторно жмем SB1. Индикатор включится, когда на затвор попадет минус.

Теперь рассмотрим еще одну схему, только универсальную, но также не особо сложную.

Обозначения:

  • Резисторы: R1, R2 и R4 – 470 Ом; R3 и R5 – 1 кОм.
  • Емкости: С1 и С2 – 100 мкФ х 10 В.
  • Диоды: VD1, VD2, VD5 и VD6 – 2N4148; VD2 и VD3 – АЛ307.

В качестве источника питания используется батарейка на 9V, по типу Кроны.

Тестирование тринисторов производится следующим образом:

  1. Переключатель S3, переводится в положении, как продемонстрировано на схеме (см. рис. 6).
  2. Кратковременно производим нажатие на кнопку S2, тестируемый элемент откроется, о чем просигнализирует светодиод VD
  3. Меняем полярность, устанавливая переключатель S3 в среднее положение (отключается питание и гаснет светодиод), потом в нижнее.
  4. Кратковременно жмем S2, светодиоды не должны загораться.

Если результат будет соответствовать вышеописанному, значит с тестируемым элементом все в порядке.

Теперь рассмотрим, как проверить с помощью собранной схемы симметричные тринисторы:

  • Выполняем пункты 1-4.
  • Нажимаем кнопку S1- загорается светодиод VD

То есть, при нажатии кнопок S1 или S2 будут загораться светодиоды VD1 или VD4, в зависимости от установленной полярности (положения переключателя S3).

Схема управления мощностью паяльника

В завершении приведем простую схему, позволяющую управлять мощностью паяльника.

Обозначения:

  • Резисторы: R1 – 100 Ом, R2 – 3,3 кОм, R3 – 20 кОм, R4 – 1 Мом.
  • Емкости: С1 – 0,1 мкФ х 400В, С2 и С3 – 0,05 мкФ.
  • Симметричный тринистор BTA41-600.

Приведенная схема настолько простая, что не требует настройки.

Теперь рассмотрим более изящный вариант управления мощностью паяльника.

Обозначения:

  • Резисторы: R1 – 680 Ом, R2 – 1,4 кОм, R3 – 1,2 кОм, R4 и R5 – 20 кОм (сдвоенное переменное сопротивление).
  • Емкости: С1 и С2 – 1 мкФ х 16 В.
  • Симметричный тринистор: VS1 – ВТ136.
  • Микросхема фазового регулятора DA1 – KP1182 ПМ1.

Настройка схемы сводится к подбору следующих сопротивлений:

  • R2 – с его помощью устанавливаем необходимую для работы минимальную температуру паяльника.
  • R3 – номинал резистора позволяет задать температуру паяльника, когда он находится на подставке (срабатывает переключатель SA1),

В электронных схемах различных приборов довольно часто используются полупроводниковые устройства – симисторы. Их применяют, как правило, при сборке схем регуляторов. В случае неисправности электроприбора может возникнуть необходимость проверить симистор. Как это сделать?

Некоторые нюансы по настройке

Существуют и более мощные регуляторы, в которых при постоянном напряжении будет показатель в 450−500 Вт, а при переменном токе — 220 вольт. Они устанавливаются на приборы, которые нуждаются в такой нагрузке. К их числу можно отнести вентиляторы, болгарки, перфораторы и т. п.

В таких приборах симистор будет выполнять функцию фазового регулятора. Диапазон мощности должен быть соответствующий. Основной функциональной обязанностью будет момент включения симистора, переключение его на более высокую или низкую нагрузку, когда она переходит через ноль.

По умолчанию симистор находится в закрытом положении. По факту увеличения напряжения происходит зарядка конденсаторов, которая делится на два направления. Этот процесс будет происходить до того момента, пока он не зарядится до 32 В суммарно по двум направлениям. После этого происходит открытие симистора и динистора. Первый будет открыт на весь полупериод. Из-за такого принципа действия и происходит на практике регулировка мощности любого устройства.

Ценовые категории

Сегодня на рынке имеется множество современных производителей, которые предлагают разные по качеству и цене товары. Нужно тщательно выбирать приспособление в зависимости от того, какой результат нужно получить.

Среди множества предложений обращать внимание необходимо на такие характеристики:

Таким образом, собрать тиристорный или симисторный регулятор мощности не составит особого труда даже для начинающих мастеров. Более сложной задачей будет усвоение правил его эксплуатации. Очень важным остаётся то, чтобы все вышеуказанные правила и инструкции по сборке учитывались. Это позволит сделать более качественное приспособление, которое будет бесперебойно и эффективно работать, а также приносить пользу своему владельцу.

Что позволяет добиться нестандартный вариант соединения

Изменение обычного способа соединения компонентов электросети в люминесцентных светильниках проводится для того, чтобы минимизировать риск поломки прибора. Лампы дневного света, несмотря на наличие внушительных достоинств, таких как отличный световой поток и низкое потребление электроэнергии, имеют и некоторые недостатки. К ним необходимо отнести:

  • во время своей работы они производят определенный шум (гудение), который обусловлен функционирование балластного элемента;
  • высокий риск перегорания стартера;
  • возможность перегрева нити накала.

Приведенная выше схема соединения компонентов электроцепи позволит избежать всех этих минусов. При ее использовании вы получите:

  • лампочку, которая будет зажигаться моментально;

Как выглядит сборка

  • прибор будет работать бесшумно;
  • отсутствует стартер, который чаще остальных деталей перегорает при частом использовании осветительной установки;
  • появляется возможность использовать светильник с перегоревшей нитью накала.

Здесь роль дросселя будет выполнять обычная лампочка накаливания. Поэтому в такой ситуации нет нужды использовать дорогостоящий и достаточно громоздкий балласт.

Регулятор оборотов для болгарки своими руками

При использовании смекалки для создания регулятора оборотов своими руками, можно использовать выпаянные платы регулятора швейной машины или пылесоса. Кроме того, составляющие для регулятора недорогие по цене, при возможности их можно легко купить. Стоит отметить, что в устройстве редуктор необходим для поддержки определенного количества оборотов и скорости. Если скорости повышенные, то причина скорее всего в статоре. Статор требует ремонта. Починка статора возможна в домашних условиях.

Регулятор оборотов можно использовать не только для болгарки, но и для дрели, фрезерного станка и коллекторного двигателя

Работа коллекторного двигателя обеспечивается любым видом электрического напряжения. При изменении мощности напряжения нужно уменьшить или увеличить количество оборотов. Изменить это число помогает как раз таки тиристорный регулятор оборотов.

Этапы сборки регулятора:

  • Для начала необходимо открутить ручку болгарки, оценить место и придумать, куда расположить элементы схемы (если места нет, то можно сделать устройство в отдельной коробке);
  • Резистор можно сделать из алюминия;
  • При условии несильного нагревания симистора радиатор достаточен небольшого размера;
  • Далее происходит припаивание конструкции.

В заключение идет проклейка эпоксидной смолой для закрепления. Самодельное устройство может работать годами. Бывают случаи, что устройство после включения разгоняется на повышенных скоростях – это значит, обмотка статора замкнулась. В данном случае произошло витковое замыкание. Статор требует ремонта, чаще всего требуется его перемотка.

Какие бывают характерные неисправности: разрывается или сгорает обмотка, возникает короткое замыкание, пробивается изолирующая поверхность.

Самостоятельное изготовление

На сегодня возможно установить простые регуляторы на электрические приборы своими руками, если имеется необходимый инструмент и схемы. Существует несколько возможных вариантов таких схем. К одной из схем можно отнести bt136 600e. Она идеально подходит, например, для регулировки степени нагрева паяльника.

Варианты схем

Паяльник можно оборудовать устройством для регулировки мощности до 90 Вт. Для этого необходимо всего лишь несколько деталей. Именно благодаря такому устройству можно изменять не только степень нагрева жала паяльника, но и уровень свечения настольной лампы, скорость вращения вентилятора для многих других приборов, которые требуют регулировки.

Такой регулятор можно собрать на основе многих симисторов, к примеру, ВТА 16600. Но идеальным вариантом будет использование устройства bt136 600e. Симистор этого типа лучше подходит для регулировки мощности жала паяльника.

Для устройства типа BTA 16600 характерной особенностью является наличие в схеме неоновой лампы. Она служит показателем мощности на текущее время и может стать удобным вариантом для многих устройств.

С другой стороны, если имеется минимальный опыт работы с микросхемами, то можно вмонтировать такую лампу в схему регулятора мощности на симисторе типа bt136 600e. Главное, правильно выбрать неоновую лампу. От правильного выбора такого устройства будет зависеть качество работы регулятора, его функциональные возможности и многое другое. Она должна иметь минимальные показатели напряжения.

От этого показателя непосредственно зависит плавность регулировки степени нагрева жала паяльника или скорости вентилятора. При монтаже стартера в светильник неоновую лампу можно не применять. Хотя функциональность устройства от этого уменьшается, поскольку показатель напряжения (мощности) прибора при работе не будет виден.

В схемах регулятора для паяльника нет ничего сложного. Для создания диодного моста используются диоды D226. К нему в обязательном порядке следует монтировать тиристор KY202H. Он имеет личную цепь управления. Если диапазон регулировки мощности устройства должен быть довольно большим, то применяются схемы с дополнительной установкой элемента логики — счётчика K561NE8. Регулировать мощность здесь также будет тиристор.

После установки диодного моста, согласно схеме следует обычный параметрический стабилизатор. Он будет включать подачу электричества на микросхему. Также важно правильно подобрать мощность и количество диодов. Они должны соответствовать желаемому диапазону регулировки.

Существует и другой вариант схемы для регулировки мощности паяльника. Она очень проста, никаких дорогостоящих и дефицитных деталей в ней нет. Предварительно установив светодиод, можно регулировать включённое/выключенное состояние.

Возможное допустимое напряжение на входе должно равняться от 120 до 210 вольт. Для любых приборов такого типа можно использовать индикатор напряжения. Такое устройство можно найти в старом магнитофоне и использовать его для личных целей. Для усовершенствования прибора можно использовать светодиод или любые другие комплектующие такого типа. Он будет подсвечивать шкалу напряжения устройства, а также включённое или выключенное состояние. Это позволит значительно увеличить его функциональность.

Сборка устройства

При сборке симисторного или тиристорного регулятора мощности своими руками следует позаботиться о качественном корпусе для устройства. Лучшим вариантом будет использование пластика, поскольку его легко согнуть, обрезать, склеить и в целом обрабатывать. Таким образом, нужно из пластика вырезать заготовки, зачистить и обработать края, после чего склеить вместе в форме коробки под устройство. В коробке монтируется сделанный регулятор. После того как прибор собран, его необходимо предварительно проверить на правильность схемы и на работоспособность перед эксплуатацией.

Для того чтобы совершить такую проверку, можно использовать обычный паяльник. В качестве альтернативы применяется мультиметр. Приборы просто нужно подключить к выходу самой регулировочной схемы и вращать ручку регулятора. Если в схеме предусмотрена проверочная лампочка, то при регулировке яркость её свечения должна изменяться.

Электронная система включения

Электромагнитный балласт постепенно вытесняется новой электронной системой ЭПРА, лишенной таких недостатков:

  • длительный запуск лампы (до 3 секунд);
  • треск или щелчки во время включения;
  • нестабильная работа при температуре воздуха ниже +10 °С;
  • мерцание низкой частоты, пагубно влияющее на зрение человека (так называемый эффект стробоскопа).

Справка. Установка источников дневного света запрещена на производственном оборудовании с вращающимися деталями именно из-за эффекта стробоскопа. При таком освещении происходит обман зрения: рабочему кажется, что шпиндель станка неподвижен, а на самом деле он крутится. Отсюда – несчастные случаи на производстве.

ЭПРА представляет собой единый блок с контактами для присоединения проводов. Внутри стоит электронная плата преобразователя частоты с трансформатором, заменяющая устаревшую ПРА электромагнитного типа. Схемы подключения люминесцентных ламп с электронным балластом обычно изображаются на корпусе блока. Здесь все просто: на клеммах стоят обозначения, куда подсоединить фазу, ноль и заземление, а также провода от светильника.

BT134-600E Datasheet Download — NXP

Номер произв BT134-600E
Описание 4Q Triac
Производители NXP
логотип  
1Page

BT134-600E
4Q Triac
21 November 2013
Product data sheet
1. General description
Planar passivated sensitive gate four quadrant triac in a SOT82 plastic package intended
for use in general purpose bidirectional switching and phase control applications. This
«series E» sensitive gate triac is intended to be interfaced directly to microcontrollers,
logic integrated circuits and other low power gate trigger circuits.
2. Features and benefits

• Compact package

• Direct interfacing to logic level ICs

• Direct interfacing to low power gate drive circuits

• High blocking voltage capability

• Low holding current for low current loads and lowest EMI at commutation

• Planar passivated for voltage ruggedness and reliability

• Sensitive gate

• Triggering in all four quadrants

3. Applications

• General purpose low power motor control

• Home appliances

• Industrial process control

4. Quick reference data
Table 1. Quick reference data
Symbol
Parameter
Conditions

VDRM

repetitive peak off-
state voltage

ITSM non-repetitive peak on- full sine wave; Tj(init) = 25 °C;

state current

tp = 20 ms; Fig. 4; Fig. 5

IT(RMS)

RMS on-state current full sine wave; Tmb ≤ 107 °C; Fig. 1;

Fig. 2; Fig. 3
Static characteristics

IGT

gate trigger current

VD = 12 V; IT = 0.1 A; T2+ G+;

Tj = 25 °C; Fig. 7

Min Typ Max Unit
— — 600 V
— — 25 A
— — 4A

2.5 10
mA
Scan or click this QR code to view the latest information for this product

NXP Semiconductors
BT134-600E
4Q Triac
Symbol
Parameter

IH holding current

Conditions

VD = 12 V; IT = 0.1 A; T2+ G-;

Tj = 25 °C; Fig. 7

VD = 12 V; IT = 0.1 A; T2- G-;

Tj = 25 °C; Fig. 7

VD = 12 V; IT = 0.1 A; T2- G+;

Tj = 25 °C; Fig. 7

VD = 12 V; Tj = 25 °C; Fig. 9

Min Typ Max Unit
— 4 10 mA
— 5 10 mA
— 11 25 mA

2.2 15
mA
5. Pinning information
Table 2. Pinning information
Pin Symbol Description
1 T1 main terminal 1
2 T2 main terminal 2
3 G gate
mb T2
mounting base; main
terminal 2
Simplified outline
Graphic symbol
T2
sym051
T1
G
123
SIP3 (SOT82)
6. Ordering information
Table 3. Ordering information
Type number
Package
Name
BT134-600E
SIP3
Description
plastic single-ended package; 3 leads (in-line)
Version
SOT82
BT134-600E
Product data sheet
All information provided in this document is subject to legal disclaimers.
21 November 2013
NXP N.V. 2013. All rights reserved
2 / 13

NXP Semiconductors
7. Limiting values
Table 4. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134).
Symbol
Parameter
Conditions

VDRM

repetitive peak off-state voltage

IT(RMS)

RMS on-state current

full sine wave; Tmb ≤ 107 °C; Fig. 1;

Fig. 2; Fig. 3

ITSM non-repetitive peak on-state full sine wave; Tj(init) = 25 °C;

current

tp = 20 ms; Fig. 4; Fig. 5

full sine wave; Tj(init) = 25 °C;

tp = 16.7 ms

I2t I2t for fusing

tp = 10 ms; SIN

dIT/dt

rate of rise of on-state current IT = 6 A; IG = 0.2 A; dIG/dt = 0.2 A/µs;

T2+ G+

IT = 6 A; IG = 0.2 A; dIG/dt = 0.2 A/µs;

T2+ G-

IT = 6 A; IG = 0.2 A; dIG/dt = 0.2 A/µs;

T2- G-

IT = 6 A; IG = 0.2 A; dIG/dt = 0.2 A/µs;

T2- G+

IGM peak gate current

PGM peak gate power

PG(AV)

average gate power
over any 20 ms period

Tstg storage temperature

Tj junction temperature

BT134-600E
4Q Triac
Min Max Unit
— 600 V
— 4A
— 25 A
— 27 A

— 3.1 A2s

— 50 A/µs
— 50 A/µs
— 50 A/µs
— 10 A/µs
— 2A
— 5W
— 0.5 W
-40 150 °C
— 125 °C
BT134-600E
Product data sheet
All information provided in this document is subject to legal disclaimers.
21 November 2013
NXP N.V. 2013. All rights reserved
3 / 13

Всего страниц 13 Pages
Скачать PDF

Особенности

Чтобы иметь полное представление о симметричных тринисторах, необходимо рассказать про их сильные и слабые стороны. К первым можно отнести следующие факторы:

  • относительно невысокая стоимость приборов;
  • длительный срок эксплуатации;
  • отсутствие механики (то есть подвижных контактов, которые являются источниками помех).

В число недостатков приборов входят следующие особенности:

Необходимость отвода тепла, примерно из расчета 1-1,5 Вт на 1 А, например, при токе 15 А величина мощности рассеивания будет около 10-22 Вт, что потребует соответствующего радиатора. Для удобства крепления к нему у мощных устройств один из выводов имеет резьбу под гайку.

  • Устройства подвержены влиянию переходных процессов, шумов и помех;
  • Не поддерживаются высокие частоты переключения.

По последним двум пунктам необходимо дать небольшое пояснение. В случае высокой скорости коммутации велика вероятность самопроизвольной активации устройства. Помеха в виде броска напряжения также может привести к этому результату. В качестве защиты от помех рекомендуется шунтировать прибор RC цепью.

Помимо этого рекомендуется минимизировать длину проводов ведущих к управляемому выводу, или в качестве альтернативы использовать экранированные проводники. Также практикуется установка шунтирующего резистора между выводом T1 (TE1 или A1) и управляющим электродом.

Разновидности тиристоров

Тиристорами принято называть группу полупроводниковых приборов (триодов), способных пропускать или не пропускать электрический ток в заданном режиме и в определенные промежутки времени. Так создают условия работоспособности схемы в соответствии с ее функциями.

Управление работой тиристоров осуществляется двумя способами:

  • подачей напряжения определенной величины для открытия или закрытия прибора, как в динисторах (диодных тиристорах) – двухэлектродных приборах;
  • подачей импульса тока определенной длительности или величины на управляющий электрод, как в тринисторах и симисторах (триодных тиристорах) – трехэлектродных приборах.

По принципу работы эти приборы различаются на три вида.

Динисторы открываются при достижении напряжения определенной величины между катодом и анодом и остаются открытыми до уменьшения напряжения опять же до установленного значения. В открытом состоянии работают по принципу диода, пропуская ток в одном направлении.

Тринисторы открываются при подаче тока на контакт управляющего электрода и остаются открытыми при положительной разности потенциалов между катодом и анодом. То есть они открыты, пока в цепи существует напряжение. Это обеспечивается наличием тока, сила которого не ниже одного из параметров тринистора – тока удержания. В открытом состоянии также работают по принципу диода.

Симисторы – разновидность тринисторов, которые пропускают ток по двум направлениям, находясь в открытом состоянии. По сути, они представляют пятислойный тиристор.

Запираемые тиристоры – тринисторы и симисторы, которые закрываются при подаче на контакт управляющего электрода тока обратной полярности, нежели та, которая вызвала его открытие.

Основные характеристики симисторов BT134

Параметр Обозначение Еди-ница Тип симистора
BT134-500 BT134-600 BT134-800
Максимальное обратное напряжение U обр. В 500 600 800
Макс. повторяющееся импульсное напр. в закрытом состоянии U зс.повт.макс. В 500 600 800
Макс. среднее за период значение тока в открытом состоянии I ос.ср.макс. А 4 4 4
Макс. кратковременный импульсный ток в открытом состоянии I кр.макс. А 25 25 25
Наименьший постоянный ток управления, необходимый для включения симистора I у.от.мин. А 0.025 0.025 0.025

Существенный недостаток тиристоров заключается в том, что это однополупериодные элементы, соответственно, в цепях переменного тока они работают с половинной мощностью. Избавиться от этого недостатка можно используя схему встречно-параллельного включения двух однотипных устройств или установив симистор. Давайте разберемся, что представляет собой этот полупроводниковый элемент, принцип его функционирования, особенности, а также сферу применения и способы проверки.

Как проверить работоспособность симистора?

В сети можно найти несколько способ, где описан процесс проверки при помощи мультиметра, те, кто описывал их, судя по всему, сами не пробовали ни один из вариантов. Чтобы не вводить в заблуждение, следует сразу заметить, что выполнить тестирование мультиметром не удастся, поскольку не хватит тока для открытия симметричного тринистора. Поэтому, у нас остается два варианта:

  1. Использовать стрелочный омметр или тестер (их силы тока будет достаточно для срабатывания).
  2. Собрать специальную схему.

Алгоритм проверки омметром:

  1. Подключаем щупы прибора к выводам T1 и T2 (A1 и A2).
  2. Устанавливаем кратность на омметре х1.
  3. Проводим измерение, положительным результатом будет бесконечное сопротивление, в противном случае деталь «пробита» и от нее можно избавиться.
  4. Продолжаем тестирование, для этого кратковременно соединяем выводы T2 и G (управляющий). Сопротивление должно упасть примерно до 20-80 Ом.
  5. Меняем полярность и повторяем тест с пункта 3 по 4.

Если в ходе проверки результат будет таким же, как описано в алгоритме, то с большой вероятностью можно констатировать, что устройство работоспособное.

Заметим, что проверяемую деталь не обязательно демонтировать, достаточно только отключить управляющий вывод (естественно, обесточив предварительно оборудование, где установлена деталь, вызывающая сомнение).

Необходимо заметить, что данным способом не всегда удается достоверно проверку, за исключением тестирования на «пробой», поэтому перейдем ко второму варианту и предложим две схемы для тестирования симметричных тринисторов.

Схему с лампочкой и батарейкой мы приводить не будем в виду того, что таких схем достаточно в сети, если вам интересен этот вариант, можете посмотреть его в публикации о тестировании тринисторов. Приведем пример более действенного устройства.

Обозначения:

  • Резистор R1 – 51 Ом.
  • Конденсаторы C1 и С2 – 1000 мкФ х 16 В.
  • Диоды – 1N4007 или аналог, допускается установка диодного моста, например КЦ405.
  • Лампочка HL – 12 В, 0,5А.

Можно использовать любой трансформатор с двумя независимыми вторичными обмотками на 12 Вольт.

Алгоритм проверки:

  1. Устанавливаем переключатели в исходное положение (соответствующее схеме).
  2. Производим нажатие на SB1, тестируемое устройство открывается, о чем сигнализирует лампочка.
  3. Жмем SB2, лампа гаснет (устройство закрылось).
  4. Меняем режим переключателя SA1 и повторяем нажатие на SB1, лампа снова должна зажечься.
  5. Производим переключение SA2, нажимаем SB1, затем снова меня ем положение SA2 и повторно жмем SB1. Индикатор включится, когда на затвор попадет минус.

Теперь рассмотрим еще одну схему, только универсальную, но также не особо сложную.

Обозначения:

  • Резисторы: R1, R2 и R4 – 470 Ом; R3 и R5 – 1 кОм.
  • Емкости: С1 и С2 – 100 мкФ х 10 В.
  • Диоды: VD1, VD2, VD5 и VD6 – 2N4148; VD2 и VD3 – АЛ307.

В качестве источника питания используется батарейка на 9V, по типу Кроны.

Тестирование тринисторов производится следующим образом:

  1. Переключатель S3, переводится в положении, как продемонстрировано на схеме (см. рис. 6).
  2. Кратковременно производим нажатие на кнопку S2, тестируемый элемент откроется, о чем просигнализирует светодиод VD
  3. Меняем полярность, устанавливая переключатель S3 в среднее положение (отключается питание и гаснет светодиод), потом в нижнее.
  4. Кратковременно жмем S2, светодиоды не должны загораться.

Если результат будет соответствовать вышеописанному, значит с тестируемым элементом все в порядке.

Теперь рассмотрим, как проверить с помощью собранной схемы симметричные тринисторы:

  • Выполняем пункты 1-4.
  • Нажимаем кнопку S1- загорается светодиод VD

То есть, при нажатии кнопок S1 или S2 будут загораться светодиоды VD1 или VD4, в зависимости от установленной полярности (положения переключателя S3).

Зачем нужна проверка

В процессе ремонта или сборки новой схемы невозможно обойтись без электрических деталей. Одной из таких деталей является симистор. Его применяют в схемах устройств сигнализации, световых регуляторах, радиоприборах и многих отраслях техники. Иногда его применяют повторно после демонтажа неработающих схем, и нередко приходится встречать элемент с утраченной от длительного использования или хранения маркировкой. Случается, что и новые детали надо проверить.

Как же быть уверенным, что симистор, установленная в схему, действительно исправен, и в будущем не нужно будет затрачивать много времени на отладку работы собранной системы?

Для этого необходимо знать, как проверить симистор мультиметром или тестером. Но сначала надо понять, что собой представляет данная деталь, и как она работает в электрических схемах.

По сути, симистор является разновидностью тиристора. Название составлено из этих двух слов – «симметричный» и «тиристор».

Применение

Этот тип полупроводниковых элементов первоначально предназначался для применения в производственной сфере, например, для управления электродвигателями станков или других устройств, где требуется плавная регулировка тока. Впоследствии, когда техническая база позволила существенно уменьшить размеры полупроводников, сфера применения симметричных тринисторов существенно расширилась. Сегодня эти устройства используются не только в промышленном оборудовании, а и во многих бытовых приборах, например:

  • зарядные устройства для автомобильных АКБ;
  • бытовое компрессорное оборудования;
  • различные виды электронагревательных устройств, начиная от электродуховок и заканчивая микроволновками;
  • ручные электрические инструменты (шуроповерт, перфоратор и т.д.).

И это далеко не полный перечень.

Одно время были популярны простые электронные устройства, позволяющие плавно регулировать уровень освещения. К сожалению, диммеры на симметричных тринисторах не могут управлять энергосберегающими и светодиодными лампами, поэтому эти приборы сейчас не актуальны.

Описание принципа работы и устройства

Основное отличие этих элементов от тиристоров заключается в двунаправленной проводимости электротока. По сути это два тринистора с общим управлением, включенных встречно-параллельно (см. А на рис. 1) .

Теперь рассмотрим структуру полупроводника (см. рис. 2.) Как видно из схемы, в устройстве имеется пять переходов, что позволяет организовать две структуры: р1-n2-p2-n3 и р2-n2-p1-n1, которые, по сути, являются двумя встречными тринисторами, подключенными параллельно.

Когда на силовом выводе Т1 образуется отрицательная полярность, начинается проявление тринисторного эффекта в р2-n2-p1-n1, а при ее смене – р1-n2-p2-n3.

Заканчивая раздел о принципе работы приведем ВАХ и основные характеристики прибора.

Обозначение:

  • А – закрытое состояние.
  • В – открытое состояние.
  • U DRM (U ПР) – максимально допустимый уровень напряжения при прямом включении.
  • U RRM (U ОБ) – максимальный уровень обратного напряжения.
  • I DRM (I ПР) – допустимый уровень тока прямого включения
  • I RRM (I ОБ) – допустимый уровень тока обратного включения.
  • I Н (I УД) – значения тока удержания.

Обратная связь в симисторных схемах регулирования

Для управления мощностью (температурой) нагревательных элементов различных приборов, скоростями вращения двигателей и т.д. в последнее время, несмотря на большую стоимость, чем электромеханика, применяется регулятор мощности на симисторе. Необходимость использования дополнительного радиатора для такой схемы – это небольшая плата взамен отсутствию рисков искрения, долгому сроку безотказной работы, стабильности выдаваемых параметров.Такая схема регулирования распространена в приборах типа паяльников, электродрелей и т.д.
Ниже приведен пример еще одной схемы регулирования мощности на симисторе. Это схема для регулирования скорости двигателя промышленной швейной машины.
Схема собрана на симисторе VS1, выпрямительных вентилях VD1 и VD2, и переменном резисторе R3 в цепи управления. Особенностью и ключевой отличительной чертой такой схемы является обратная связь. Симистор, пропускающий ток в обоих направлениях – это лучшее решение для схем регулирования, где необходимо наличие такой обратной связи.

Сравнивая с устаревшими коммутационными технологиями, можно обозначить еще одно явное преимущество схем регулирования мощности на симисторах – это возможность обеспечения качественной обратной связи и соответственно корректировки работы по обратной связи.

Особенности и преимущества схемы:

  1. В данном случае реализована обратная связь по нагрузке, что позволяет усиливать обороты двигателя и обеспечивать плавную бесперебойную работу машины в случае возрастания нагрузочных усилий. При этом все операции выполняются схемой автоматически. Не возникает искрений или перегрева. Как видно из рисунка, теплоотвода не предусмотрено.

Данная схема – это регулирование активной мощности приборов. Не рекомендуется применение таких схем в системах регулирования интенсивности освещения. По ряду причин, осветительные приборы будут сильно мигать.

Коммутация симистора в данной схеме происходит строго в моменты перехода через «0» сетевого напряжения, поэтому можно заявлять о полном отсутствии помех со стороны регулятора.

Приводится в действие, то есть включается симистор от поступающего на управляющий электрод положительного импульса при положительном напряжении на аноде, либо от отрицательного импульса при отрицательном положении на катоде. Катод и анод, учитывая особенности двунаправленной работы симистора тут условные. в зависимости от работы в разных направлениях они будут меняться функциями.

В роли источника импульсов для управления симистором может быть применен двунаправленный динистор. Либо, из соображений удешевления схемы, можно подключить во встречно-параллельном направлении пару обыкновенных динисторов. Для обеспечения большей ширины диапазона регулирования малых напряжений оптимальным выбором станут динисторы типа КНР102А. Еще один вариант ключевого элемента – лавинный транзистор.

Регулирования активной и реактивной мощности имеют некоторые отличительные особенности. Управление индуктивной нагрузкой требует включения в схему RC-цепочки (параллельно симистору). Это позволит сдерживать скорость увеличения напряжения на аноде симистора.

Приборы, которые работают на потреблении электрического тока, без проблем можно настраивать. Конечно, с учётом, если на устройстве имеется уже такая возможность. Но даже если её нет, то можно сделать это самостоятельно, вмонтировав тиристорный или симисторный регулятор мощности. Самая распространённая схема включения регулировки напряжения — bt136 600e.

Преимущества и недостатки

Сегодня на профильном рынке начинают лидировать по продажам симисторные регуляторы. В отличие от тиристоров симисторы имеют двухстороннее действие, поскольку у них есть катод и анод. Это позволяет изменять в процессе работы направление тока.

Стоит отметить, что заменять их на контакторы, реле или пускатели нецелесообразно. Связано это с долговечностью симистора, а также многими другими положительными качествами такого приспособления. Установив его на схему, он практически никогда не выйдет из строя. Также положительным моментом можно считать полное отсутствие искры при работе. Анализировались схемы на симисторах, которые по себестоимости были значительно дешевле аналогов, базирующихся на транзисторах и микросхемах.

Таким образом, использование симисторов имеет ряд значительных преимуществ:

  • большой срок эксплуатации (детали практически не изнашиваются);
  • цена прибора невысока;
  • при работе можно избежать механических контактов.

Это не весь список преимуществ. Существуют некоторые модели, которые могут похвастаться определёнными особенностями.

Имеются и специфические минусы:

  • посторонние помехи и шумы;
  • устройство имеет большую чувствительность к переходным процессам;
  • во избежание перегрева прибор устанавливается в радиатор;
  • использование на больших частотах невозможно.

Цели применения

Симисторный регулятор напряжения имеет свои особенности использования. Такие устройства бывают разной мощности и в зависимости от этого могут применяться для работы того или иного прибора.

Симисторы активно используются в таких видах бытовой техники:

Если готовить о видах симисторных регуляторов, то их объединяет одна характеристика — все они работают по похожему принципу. Единственное различие между ними — их мощность. Существуют виды симисторов, которые нужно особо тщательно регулировать при настройке управляющих сигналов. Управление у различных видов разное. Это может быть простейшая конструкция на нескольких конденсаторах и резисторах, а может быть сложная схема с микроконтроллером.

Самостоятельное изготовление

На сегодня возможно установить простые регуляторы на электрические приборы своими руками, если имеется необходимый инструмент и схемы. Существует несколько возможных вариантов таких схем. К одной из схем можно отнести bt136 600e. Она идеально подходит, например, для регулировки степени нагрева паяльника.

Варианты схем

Паяльник можно оборудовать устройством для регулировки мощности до 90 Вт. Для этого необходимо всего лишь несколько деталей. Именно благодаря такому устройству можно изменять не только степень нагрева жала паяльника, но и уровень свечения настольной лампы, скорость вращения вентилятора для многих других приборов, которые требуют регулировки.

Такой регулятор можно собрать на основе многих симисторов, к примеру, ВТА 16600. Но идеальным вариантом будет использование устройства bt136 600e. Симистор этого типа лучше подходит для регулировки мощности жала паяльника.

Для устройства типа BTA 16600 характерной особенностью является наличие в схеме неоновой лампы. Она служит показателем мощности на текущее время и может стать удобным вариантом для многих устройств.

С другой стороны, если имеется минимальный опыт работы с микросхемами, то можно вмонтировать такую лампу в схему регулятора мощности на симисторе типа bt136 600e. Главное, правильно выбрать неоновую лампу. От правильного выбора такого устройства будет зависеть качество работы регулятора, его функциональные возможности и многое другое. Она должна иметь минимальные показатели напряжения.

От этого показателя непосредственно зависит плавность регулировки степени нагрева жала паяльника или скорости вентилятора. При монтаже стартера в светильник неоновую лампу можно не применять. Хотя функциональность устройства от этого уменьшается, поскольку показатель напряжения (мощности) прибора при работе не будет виден.

В схемах регулятора для паяльника нет ничего сложного. Для создания диодного моста используются диоды D226. К нему в обязательном порядке следует монтировать тиристор KY202H. Он имеет личную цепь управления. Если диапазон регулировки мощности устройства должен быть довольно большим, то применяются схемы с дополнительной установкой элемента логики — счётчика K561NE8. Регулировать мощность здесь также будет тиристор.

После установки диодного моста, согласно схеме следует обычный параметрический стабилизатор. Он будет включать подачу электричества на микросхему. Также важно правильно подобрать мощность и количество диодов. Они должны соответствовать желаемому диапазону регулировки.

Существует и другой вариант схемы для регулировки мощности паяльника. Она очень проста, никаких дорогостоящих и дефицитных деталей в ней нет. Предварительно установив светодиод, можно регулировать включённое/выключенное состояние.

Возможное допустимое напряжение на входе должно равняться от 120 до 210 вольт. Для любых приборов такого типа можно использовать индикатор напряжения. Такое устройство можно найти в старом магнитофоне и использовать его для личных целей. Для усовершенствования прибора можно использовать светодиод или любые другие комплектующие такого типа. Он будет подсвечивать шкалу напряжения устройства, а также включённое или выключенное состояние. Это позволит значительно увеличить его функциональность.

Сборка устройства

При сборке симисторного или тиристорного регулятора мощности своими руками следует позаботиться о качественном корпусе для устройства. Лучшим вариантом будет использование пластика, поскольку его легко согнуть, обрезать, склеить и в целом обрабатывать. Таким образом, нужно из пластика вырезать заготовки, зачистить и обработать края, после чего склеить вместе в форме коробки под устройство. В коробке монтируется сделанный регулятор. После того как прибор собран, его необходимо предварительно проверить на правильность схемы и на работоспособность перед эксплуатацией.

Для того чтобы совершить такую проверку, можно использовать обычный паяльник. В качестве альтернативы применяется мультиметр. Приборы просто нужно подключить к выходу самой регулировочной схемы и вращать ручку регулятора. Если в схеме предусмотрена проверочная лампочка, то при регулировке яркость её свечения должна изменяться.

Некоторые нюансы по настройке

Существуют и более мощные регуляторы, в которых при постоянном напряжении будет показатель в 450−500 Вт, а при переменном токе — 220 вольт. Они устанавливаются на приборы, которые нуждаются в такой нагрузке. К их числу можно отнести вентиляторы, болгарки, перфораторы и т. п.

В таких приборах симистор будет выполнять функцию фазового регулятора. Диапазон мощности должен быть соответствующий. Основной функциональной обязанностью будет момент включения симистора, переключение его на более высокую или низкую нагрузку, когда она переходит через ноль.

По умолчанию симистор находится в закрытом положении. По факту увеличения напряжения происходит зарядка конденсаторов, которая делится на два направления. Этот процесс будет происходить до того момента, пока он не зарядится до 32 В суммарно по двум направлениям. После этого происходит открытие симистора и динистора. Первый будет открыт на весь полупериод. Из-за такого принципа действия и происходит на практике регулировка мощности любого устройства.

Использование тиристора

Использование такого регулятора напряжения, как тиристор, позволяет сделать плавную регулировку, к примеру, паяльника от половины возможного напряжения до максимального. Если схему усовершенствовать и добавить диодный мост, то можно сделать регулировку от 0 до 100%.

Принцип сборки регулятора на симисторе очень похож на используемый в тиристорном устройстве. Этот метод применим для сборки любого прибора такого типа.

Сборка тиристорного регулятора на печатной плате выглядит следующим образом:

  1. Сначала необходимо подготовить монтажную схему. Для этого следует наметить на стартовой плате с помощью гвоздя или иголки саму схему. Она должна располагаться удобным образом. Если делать это сложно начинающему мастеру, то можно приобрести плату с готовой схемой.
  2. Подготовка всех требуемых материалов и инструментов. К ним нужно отнести печатную плату. Её можно сделать самостоятельно или купить. Также следует подготовить нож, кусачки, паяльник, припой, флюс провода и т. п.
  3. Дальше нужно вмонтировать все детали согласно заранее подготовленной схеме.
  4. Лишние концы всех деталей необходимо удалить с помощью кусачек.
  5. После этого идёт этап пропайки. Сперва все детали проделываются флюсом, потом пропаиваются в такой последовательности: конденсаторы с резисторами, транзисторы, тиристоры, диоды, динисторы.
  6. Следующий этап — подготовка корпуса для сборки.
  7. Зачистка, запайка контактов.
  8. Изоляция проводов.
  9. Проверка перед эксплуатацией.
  10. Финальная сборка.

Тиристор с небольшой мощностью не имеет больших габаритов, поэтому его использовать очень удобно. К особенным характеристикам этого прибора можно отнести повышенную чувствительность.

В целях управления устройством устанавливается конденсатор с резистором. Он может быть применён к приборам, общая мощность которых не превышает 40 Ватт. Существует возможность регулировки мощности от минимума до максимума.

Ценовые категории

Сегодня на рынке имеется множество современных производителей, которые предлагают разные по качеству и цене товары. Нужно тщательно выбирать приспособление в зависимости от того, какой результат нужно получить.

Среди множества предложений обращать внимание необходимо на такие характеристики:

Таким образом, собрать тиристорный или симисторный регулятор мощности не составит особого труда даже для начинающих мастеров. Более сложной задачей будет усвоение правил его эксплуатации. Очень важным остаётся то, чтобы все вышеуказанные правила и инструкции по сборке учитывались. Это позволит сделать более качественное приспособление, которое будет бесперебойно и эффективно работать, а также приносить пользу своему владельцу.

Существенный недостаток тиристоров заключается в том, что это однополупериодные элементы, соответственно, в цепях переменного тока они работают с половинной мощностью. Избавиться от этого недостатка можно используя схему встречно-параллельного включения двух однотипных устройств или установив симистор. Давайте разберемся, что представляет собой этот полупроводниковый элемент, принцип его функционирования, особенности, а также сферу применения и способы проверки.

Что такое симистор?

Это один из видов тиристоров, отличающийся от базового типа большим числом p-n переходов, и как следствие этого, принципом работы (он будет описан ниже). Характерно, что в элементной базе некоторых стран данный тип считается самостоятельным полупроводниковым устройством. Эта незначительная путаница возникла вследствие регистрации двух патентов, на одно и то же изобретение.

Описание принципа работы и устройства

Основное отличие этих элементов от тиристоров заключается в двунаправленной проводимости электротока. По сути это два тринистора с общим управлением, включенных встречно-параллельно (см. А на рис. 1) .

Рис. 1. Схема на двух тиристорах, как эквивалент симистора, и его условно графическое обозначение

Это и дало название полупроводниковому прибору, как производную от словосочетания «симметричные тиристоры» и отразилось на его УГО. Обратим внимание на обозначения выводов, поскольку ток может проводиться в оба направления, обозначение силовых выводов как Анод и Катод не имеет смысла, потому их принято обозначать, как «Т1» и «Т2» (возможны варианты ТЕ1 и ТЕ2 или А1 и А2). Управляющий электрод, как правило, обозначается «G» (от английского gate).

Теперь рассмотрим структуру полупроводника (см. рис. 2.) Как видно из схемы, в устройстве имеется пять переходов, что позволяет организовать две структуры: р1-n2-p2-n3 и р2-n2-p1-n1, которые, по сути, являются двумя встречными тринисторами, подключенными параллельно.


Рис. 2. Структурная схема симистора

Когда на силовом выводе Т1 образуется отрицательная полярность, начинается проявление тринисторного эффекта в р2-n2-p1-n1, а при ее смене – р1-n2-p2-n3.

Заканчивая раздел о принципе работы приведем ВАХ и основные характеристики прибора.


Обозначение:

  • А – закрытое состояние.
  • В – открытое состояние.
  • U DRM (U ПР) – максимально допустимый уровень напряжения при прямом включении.
  • U RRM (U ОБ) – максимальный уровень обратного напряжения.
  • I DRM (I ПР) – допустимый уровень тока прямого включения
  • I RRM (I ОБ) – допустимый уровень тока обратного включения.
  • I Н (I УД) – значения тока удержания.

Особенности

Чтобы иметь полное представление о симметричных тринисторах, необходимо рассказать про их сильные и слабые стороны. К первым можно отнести следующие факторы:

  • относительно невысокая стоимость приборов;
  • длительный срок эксплуатации;
  • отсутствие механики (то есть подвижных контактов, которые являются источниками помех).

В число недостатков приборов входят следующие особенности:

  • Необходимость отвода тепла, примерно из расчета 1-1,5 Вт на 1 А, например, при токе 15 А величина мощности рассеивания будет около 10-22 Вт, что потребует соответствующего радиатора. Для удобства крепления к нему у мощных устройств один из выводов имеет резьбу под гайку.


  • Устройства подвержены влиянию переходных процессов, шумов и помех;
  • Не поддерживаются высокие частоты переключения.

По последним двум пунктам необходимо дать небольшое пояснение. В случае высокой скорости коммутации велика вероятность самопроизвольной активации устройства. Помеха в виде броска напряжения также может привести к этому результату. В качестве защиты от помех рекомендуется шунтировать прибор RC цепью.


Помимо этого рекомендуется минимизировать длину проводов ведущих к управляемому выводу, или в качестве альтернативы использовать экранированные проводники. Также практикуется установка шунтирующего резистора между выводом T1 (TE1 или A1) и управляющим электродом.

Применение

Этот тип полупроводниковых элементов первоначально предназначался для применения в производственной сфере, например, для управления электродвигателями станков или других устройств, где требуется плавная регулировка тока. Впоследствии, когда техническая база позволила существенно уменьшить размеры полупроводников, сфера применения симметричных тринисторов существенно расширилась. Сегодня эти устройства используются не только в промышленном оборудовании, а и во многих бытовых приборах, например:

  • зарядные устройства для автомобильных АКБ;
  • бытовое компрессорное оборудования;
  • различные виды электронагревательных устройств, начиная от электродуховок и заканчивая микроволновками;
  • ручные электрические инструменты (шуроповерт, перфоратор и т.д.).

И это далеко не полный перечень.

Одно время были популярны простые электронные устройства, позволяющие плавно регулировать уровень освещения. К сожалению, диммеры на симметричных тринисторах не могут управлять энергосберегающими и светодиодными лампами, поэтому эти приборы сейчас не актуальны.

Как проверить работоспособность симистора?

В сети можно найти несколько способ, где описан процесс проверки при помощи мультиметра, те, кто описывал их, судя по всему, сами не пробовали ни один из вариантов. Чтобы не вводить в заблуждение, следует сразу заметить, что выполнить тестирование мультиметром не удастся, поскольку не хватит тока для открытия симметричного тринистора. Поэтому, у нас остается два варианта:

  1. Использовать стрелочный омметр или тестер (их силы тока будет достаточно для срабатывания).
  2. Собрать специальную схему.

Алгоритм проверки омметром:

  1. Подключаем щупы прибора к выводам T1 и T2 (A1 и A2).
  2. Устанавливаем кратность на омметре х1.
  3. Проводим измерение, положительным результатом будет бесконечное сопротивление, в противном случае деталь «пробита» и от нее можно избавиться.
  4. Продолжаем тестирование, для этого кратковременно соединяем выводы T2 и G (управляющий). Сопротивление должно упасть примерно до 20-80 Ом.
  5. Меняем полярность и повторяем тест с пункта 3 по 4.

Если в ходе проверки результат будет таким же, как описано в алгоритме, то с большой вероятностью можно констатировать, что устройство работоспособное.

Заметим, что проверяемую деталь не обязательно демонтировать, достаточно только отключить управляющий вывод (естественно, обесточив предварительно оборудование, где установлена деталь, вызывающая сомнение).

Необходимо заметить, что данным способом не всегда удается достоверно проверку, за исключением тестирования на «пробой», поэтому перейдем ко второму варианту и предложим две схемы для тестирования симметричных тринисторов.

Схему с лампочкой и батарейкой мы приводить не будем в виду того, что таких схем достаточно в сети, если вам интересен этот вариант, можете посмотреть его в публикации о тестировании тринисторов. Приведем пример более действенного устройства.


Обозначения:

  • Резистор R1 – 51 Ом.
  • Конденсаторы C1 и С2 – 1000 мкФ х 16 В.
  • Диоды – 1N4007 или аналог, допускается установка диодного моста, например КЦ405.
  • Лампочка HL – 12 В, 0,5А.

Можно использовать любой трансформатор с двумя независимыми вторичными обмотками на 12 Вольт.

Алгоритм проверки:

  1. Устанавливаем переключатели в исходное положение (соответствующее схеме).
  2. Производим нажатие на SB1, тестируемое устройство открывается, о чем сигнализирует лампочка.
  3. Жмем SB2, лампа гаснет (устройство закрылось).
  4. Меняем режим переключателя SA1 и повторяем нажатие на SB1, лампа снова должна зажечься.
  5. Производим переключение SA2, нажимаем SB1, затем снова меня ем положение SA2 и повторно жмем SB1. Индикатор включится, когда на затвор попадет минус.

Теперь рассмотрим еще одну схему, только универсальную, но также не особо сложную.


Обозначения:

  • Резисторы: R1, R2 и R4 – 470 Ом; R3 и R5 – 1 кОм.
  • Емкости: С1 и С2 – 100 мкФ х 10 В.
  • Диоды: VD1, VD2, VD5 и VD6 – 2N4148; VD2 и VD3 – АЛ307.

В качестве источника питания используется батарейка на 9V, по типу Кроны.

Тестирование тринисторов производится следующим образом:

  1. Переключатель S3, переводится в положении, как продемонстрировано на схеме (см. рис. 6).
  2. Кратковременно производим нажатие на кнопку S2, тестируемый элемент откроется, о чем просигнализирует светодиод VD
  3. Меняем полярность, устанавливая переключатель S3 в среднее положение (отключается питание и гаснет светодиод), потом в нижнее.
  4. Кратковременно жмем S2, светодиоды не должны загораться.

Если результат будет соответствовать вышеописанному, значит с тестируемым элементом все в порядке.

Теперь рассмотрим, как проверить с помощью собранной схемы симметричные тринисторы:

  • Выполняем пункты 1-4.
  • Нажимаем кнопку S1- загорается светодиод VD

То есть, при нажатии кнопок S1 или S2 будут загораться светодиоды VD1 или VD4, в зависимости от установленной полярности (положения переключателя S3).

Схема управления мощностью паяльника

В завершении приведем простую схему, позволяющую управлять мощностью паяльника.


Обозначения:

  • Резисторы: R1 – 100 Ом, R2 – 3,3 кОм, R3 – 20 кОм, R4 – 1 Мом.
  • Емкости: С1 – 0,1 мкФ х 400В, С2 и С3 – 0,05 мкФ.
  • Симметричный тринистор BTA41-600.

Приведенная схема настолько простая, что не требует настройки.

Теперь рассмотрим более изящный вариант управления мощностью паяльника.


Обозначения:

  • Резисторы: R1 – 680 Ом, R2 – 1,4 кОм, R3 – 1,2 кОм, R4 и R5 – 20 кОм (сдвоенное переменное сопротивление).
  • Емкости: С1 и С2 – 1 мкФ х 16 В.
  • Симметричный тринистор: VS1 – ВТ136.
  • Микросхема фазового регулятора DA1 – KP1182 ПМ1.

Настройка схемы сводится к подбору следующих сопротивлений:

  • R2 – с его помощью устанавливаем необходимую для работы минимальную температуру паяльника.
  • R3 – номинал резистора позволяет задать температуру паяльника, когда он находится на подставке (срабатывает переключатель SA1),

All manufacturers
AAT AB Semicon ABB Abracon Accutek Actel Adaptec A-Data Advanced Micro Systems Advanced Photonix Aeroflex Agere Agilent AHA AIC Aimtec AKM ALD ALi Allegro Alliance Alpha Alpha Micro. Alpha&Omega Altera AMCC AMD AME American Bright LED AMI AMICC Amplifonix AMS AMSCO Anachip Anadigics Anadigm Analog Devices Analogic AnalogicTech Anaren Andigilog Anpec Apex API Delevan Aplus A-Power APT Arizona Microtek ARM Artesyn ASI Asiliant ASIX Astec ATMEL AudioCodes AUK Auris Austin Authentec Avalon Photonics AverLogic AVG AvicTek AVX AZ Displays B&B Electronics Barker Microfarads BCD BEL Fuse BI Tech. Bicron BitParts Bivar Boca Bookham Bourns Broadcom BSI Burr-Brown Bytes C&D CalCrystal Calex CalMicro Calogic Capella Carlo Gavazzi Catalyst CDI Diodes CDIL CEL Centillium Central Century Ceramate Cermetek CET Cherry Chinfa Chingis Chipcon Chrontel Cirrus CIT Clairex Clare C-Media CML CML Micro Cologne Comchip Composite Modules Conexant Connor-Winfield COSEL COSMO Cree Crydom CSR CTS Cyntec Cypress Cystech Daesan Daewoo DAICO Dallas Data Delay Datel DB Lectro DCCOM Delta Densei-Lambda Dialight Digital Voice Sys Diodes Dionics Diotec DPAC Dynex EIC Eichhoff E-Lab Elantec Electronic Devices EliteMT ELM Elmos Elpida EM Microelectronic EMC Enpirion E-OEC Eon Silicon EPCOS EPSON Ericsson ESS Tech. E-Tech Etron Eudyna Eupec Everlight Exar Excelics ExcelSemi Fagor Fairchild FCI Filtran Filtronic Fitpower Formosa Fox Electronics Freescale Frequency Devices Frequency Management FTDI Chip Fuji Fujitsu Galaxy Gamma GEC General Semiconductor Genesis Microchip Genesys Logic Gennum GHzTech Gilway G-Link GMT Golledge GOOD-ARK Grayhill Green Power GSI Hamamatsu Hanamicron Hanbit Harris HB HexaWave Hifn High Tech Chips Hirose Hi-Sincerity Hitachi Hitachi Metals Hittite HN Electronic Holtek HoltIC Honeywell Humirel HV Component Hynix Hytek Hyundai IBM IC Haus ICC I-Chips ICOM ICSI ICST IDT IK Semi. IMP Impala Infineon Initio InnovASIC Int Power Sources INTEL InterFET Interpion Interpoint Intersil Intronics IOtech IRF Isahaya ISD Isocom ISSI ITE Itran ITT IXYS Jess JGD Jiangsu Kawasaki KEC Kemet Kentron King Billion Kingbright Knox KOA Kodak Kodenshi Kyocera Kinseki Lambda Lattice Ledtech LEDtronics Legerity LEM Leshan Radio Level One LG Linear Linear Dimensions Designs Linear IS Lite-On Littelfuse Logic Devices LSI LSI Logic Lumex M.S. Kennedy M/A-COM Macroblock Macronix MagnaChip Marktech Martek Power Marvell MAS Oy MAXIM Maxwell MAZeT MCC MCE KDI MDTIC Melexis Memphis Memsic Micrel Micro Electronics Micro Linear Microchip MicroMetrics Micron Micronas Micronetics Wireless Micropac Microsemi Mimix Mindspeed Mini-Circuits Minilogic Minmax MIPS Mitel Mitsubishi Mitsumi MOSA Mosel Mospec MoSys Motorola M-pulse MtronPTI Murata Music Myson Nais NanoAmp Nanya National Instruments National Semiconductor NEC NEL NetLogic NeuriCam NHI Nichicon NIEC NJRC Noise/Com Nordic VLSI Novalog Novatek NPC NTE NTT NVE NVIDIA O2Micro Octasic OEI OKI OmniVision Omron ON Semiconductor OPTEK Opto Diode Optolab Optrex OSRAM OTAX Oxford MDi Pacific Mono Pan Jit Panasonic Para Light Patriot Scientific PCA PEAK Peregrine Performance Tech. Pericom PerkinElmer PhaseLink Philips Picker Pixim PLX PMC-Sierra PMD Motion Polyfet Power Innovations Power Integrations Power Semiconductors Powerchip Powerex Power-One Powertip Precid-Dip Promax-Johnton Pronics Protek PTC Pulse Pyramid QLogic QT Qualcomm Quantum QuickLogic R&E Raltron Ramtron Raytheon RD Alfa RDC Realtek Recom Rectron Renesas RF Monolithics RFE RFMD Rhopoint RichTek RICOH Rohm Rubycon Saifun SAMES SamHop Samsung SanDisk Sanken SanRex Sanyo SCBT Seiko SemeLAB Semicoa Semikron SemiWell Semtech Sensitron Sensory Shanghai Lunsure Shanghai Lunsure SHARP Shindengen Siemens SiGe SigmaTel Signetics Silan Silicon Image Silicon Lab. Silicon Power Siliconians Silonex Simtek Sipex Sirenza SiRF Sitronix Skyworks SLS Smartec SMSC Solid State Solitron Solomon Systech SONiX SONY Spansion SSDI SSE SST Stanford Stanley Stanson Statek STATS STMicroelectronics Sumida Summit SunLED Supertex Surge Sussex Swindon Symmetricom Synergy Synsemi Syntec System General Systron Donner Tachyonics Taiyo Yuden Talema TAOSinc TDK Teccor Tekmos TelCom Teledyne Temex TEMIC Thaler THAT Thermtrol THine TI TLSI TMT TOKO Tontek Topro Torex Toshiba Total Power Traco Transmeta Transys Trinamic Tripath TriQuint Triscend TSC Turbo IC Ubicom UMC UMS Unisem Unitra UOT Us Digital USHA UTC Utron Vaishali Valpey-Fisher Varitronix Vectron VIA Vicor VIS Vishay Vitesse Voltage Multipliers Waitrony WDC WEDC Weida Weitron Weltrend Westcode Winbond Wing Shing Winson Winstar Wisdom WJ Wolfgang Knap Wolfson WTE Xecom Xicor Xilinx YAMAHA Yellow Stone YEONHO Zarlink Z-Communications Zenic Zetex Zettler Zilog ZMD Zoran Zowie

Рис. 1 Цоколевка симистора BT134

BT134 выпускается в пластмассовом корпусе типа SOT-82. Симисторы BT134 серии применяются в схемах управления электродвигателями, в промышленных и бытовых осветительных приборах, в электронагревательных приборах и другой бытовой технике.

Система обозначений симисторов, тиристоров, динисторов BT выпускаемых компанией Philips

1. ВТ — симистор Philips

3. не обозначается для серии 134, тип корпуса симисторов BT134 — SOT-82

4. Макс. напряжение, В

5. Ток отпирания управляющего электрода: не обозначается – 35 мА, B – 50 мА, D – 5 мА, E – 10 мА, F – 25 мА

Основные характеристики симисторов BT134

Параметр Обозначение Еди-
ница
Тип симистора
BT134-500 BT134-600 BT134-800
Максимальное обратное напряжение U обр. В 500 600 800
Макс. повторяющееся импульсное напр. в закрытом состоянии U зс.повт.макс. В 500 600 800
Макс. среднее за период значение тока в открытом состоянии I ос.ср.макс. А 4 4 4
Макс. кратковременный импульсный ток в открытом состоянии I кр.макс. А 25 25 25
Наименьший постоянный ток управления,
необходимый для включения симистора
I у.от.мин. А 0.025 0.025 0.025

Сегодня я вам расскажу об очень полезной схеме, которая пригодится как в лаборатории, так и в хозяйстве. Устройство, о котором пойдет речь, называется симисторный регулятор мощности. Регулятор можно применить для плавной регулировки яркостью освещения, температуры паяльника, оборотами электродвигателя (переменного тока). Мой вариант применения регулятора интересней, я плавно регулирую температуру нагрева тэна мощностью 1кВт в самогонном аппарате. Да-да, я занимаюсь этим благородным делом.

Работа схемы описана в статье «Диммер своими руками».

Рабочая температура кристалла симистора от -40 до +125 градусов Цельсия. Необходимо сделать хорошее охлаждение. У меня нагрузка 1кВт, соответственно ток нагрузки около 5А, радиатор площадью 200см кв. греется от 85 до90 градусов Цельсия при длительной работе (до 6ч). Планирую увеличить рабочую площадь радиатора, чтобы повысить надежность устройства.

Симистор имеет управляющий вывод и два вывода, через которые проходит ток нагрузки. Эти два вывода можно менять местами ничего страшного не случиться.

Для безопасности (чтобы не щелкнуло током), симистор необходимо устанавливать на радиатор через диэлектрическую прокладку (полимерную или слюдяную) и диэлектрическую втулку.

Компоненты.

Резистор 4.7кОм мощностью 0,25Вт. Динистор с маркировкой DB3 , полярности не имеет, впаивать любой стороной. Конденсатор пленочный на 100нФ 400В полярности не имеет.

  • Симисторы217

Светодиод любого цвета диаметром 3мм, обратное напряжение 5В, ток 25мА. Короче любой светодиод 3мм. Светодиод дает индикацию нагрузки, не пугайтесь, если при первом включении (естественно без нагрузки) он светиться не будет.

Первое включение необходимо производить кратковременно без нагрузки. Если все нормально, никакие элементы не греются, ничего не щелкнуло, тогда включаем без нагрузки на 15 секунд. Далее цепляем лампу напряжением 220В и мощностью 60-200Вт, крутим ручку переменного резистора и наслаждаемся работой.

Для защиты я установил в разрыв сетевого провода (220В) предохранитель на 12А.

Собранный нами регулятор мощности на симисторе BTA12-600 можно применить для регулировки температуры паяльника (регулируя мощность), тем самым получив паяльную станцию для вашей мастерской.

Печатная плата регулятора мощности на симисторе BTA12-600 СКАЧАТЬ

Даташит на BTA12-600 СКАЧАТЬ

В электронных схемах различных приборов довольно часто используются полупроводниковые устройства – симисторы. Их применяют, как правило, при сборке схем регуляторов. В случае неисправности электроприбора может возникнуть необходимость проверить симистор. Как это сделать?

Зачем нужна проверка

В процессе ремонта или сборки новой схемы невозможно обойтись без электрических деталей. Одной из таких деталей является симистор. Его применяют в схемах устройств сигнализации, световых регуляторах, радиоприборах и многих отраслях техники. Иногда его применяют повторно после демонтажа неработающих схем, и нередко приходится встречать элемент с утраченной от длительного использования или хранения маркировкой. Случается, что и новые детали надо проверить.

Как же быть уверенным, что симистор, установленная в схему, действительно исправен, и в будущем не нужно будет затрачивать много времени на отладку работы собранной системы?

  • Обозначение и принцип действия симистора: объяснение для «чайников»

Для этого необходимо знать, как проверить симистор мультиметром или тестером. Но сначала надо понять, что собой представляет данная деталь, и как она работает в электрических схемах.

По сути, симистор является разновидностью тиристора. Название составлено из этих двух слов – «симметричный» и «тиристор».

Применение

Этот тип полупроводниковых элементов первоначально предназначался для применения в производственной сфере, например, для управления электродвигателями станков или других устройств, где требуется плавная регулировка тока. Впоследствии, когда техническая база позволила существенно уменьшить размеры полупроводников, сфера применения симметричных тринисторов существенно расширилась. Сегодня эти устройства используются не только в промышленном оборудовании, а и во многих бытовых приборах, например:

  • зарядные устройства для автомобильных АКБ;
  • бытовое компрессорное оборудования;
  • различные виды электронагревательных устройств, начиная от электродуховок и заканчивая микроволновками;
  • ручные электрические инструменты (шуроповерт, перфоратор и т.д.).

И это далеко не полный перечень.

Одно время были популярны простые электронные устройства, позволяющие плавно регулировать уровень освещения. К сожалению, диммеры на симметричных тринисторах не могут управлять энергосберегающими и светодиодными лампами, поэтому эти приборы сейчас не актуальны.

Разновидности тиристоров

Тиристорами принято называть группу полупроводниковых приборов (триодов), способных пропускать или не пропускать электрический ток в заданном режиме и в определенные промежутки времени. Так создают условия работоспособности схемы в соответствии с ее функциями.

Управление работой тиристоров осуществляется двумя способами:

  • подачей напряжения определенной величины для открытия или закрытия прибора, как в динисторах (диодных тиристорах) – двухэлектродных приборах;
  • подачей импульса тока определенной длительности или величины на управляющий электрод, как в тринисторах и симисторах (триодных тиристорах) – трехэлектродных приборах.

По принципу работы эти приборы различаются на три вида.

Динисторы открываются при достижении напряжения определенной величины между катодом и анодом и остаются открытыми до уменьшения напряжения опять же до установленного значения. В открытом состоянии работают по принципу диода, пропуская ток в одном направлении.

Тринисторы открываются при подаче тока на контакт управляющего электрода и остаются открытыми при положительной разности потенциалов между катодом и анодом. То есть они открыты, пока в цепи существует напряжение. Это обеспечивается наличием тока, сила которого не ниже одного из параметров тринистора – тока удержания. В открытом состоянии также работают по принципу диода.

Симисторы – разновидность тринисторов, которые пропускают ток по двум направлениям, находясь в открытом состоянии. По сути, они представляют пятислойный тиристор.

Запираемые тиристоры – тринисторы и симисторы, которые закрываются при подаче на контакт управляющего электрода тока обратной полярности, нежели та, которая вызвала его открытие.

  • 5 самых популярных схем регуляторов напряжения (РН) 0-220 вольт своими руками

Основные характеристики симисторов BT134

Параметр Обозначение Еди- ница Тип симистора
BT134-500 BT134-600 BT134-800
Максимальное обратное напряжение U обр. В 500 600 800
Макс. повторяющееся импульсное напр. в закрытом состоянии U зс.повт.макс. В 500 600 800
Макс. среднее за период значение тока в открытом состоянии I ос.ср.макс. А 4 4 4
Макс. кратковременный импульсный ток в открытом состоянии I кр.макс. А 25 25 25
Наименьший постоянный ток управления, необходимый для включения симистора I у.от.мин. А 0.025 0.025 0.025

All manufacturers AAT AB Semicon ABB Abracon Accutek Actel Adaptec A-Data Advanced Micro Systems Advanced Photonix Aeroflex Agere Agilent AHA AIC Aimtec AKM ALD ALi Allegro Alliance Alpha Alpha Micro. Alpha&Omega Altera AMCC AMD AME American Bright LED AMI AMICC Amplifonix AMS AMSCO Anachip Anadigics Anadigm Analog Devices Analogic AnalogicTech Anaren Andigilog Anpec Apex API Delevan Aplus A-Power APT Arizona Microtek ARM Artesyn ASI Asiliant ASIX Astec ATMEL AudioCodes AUK Auris Austin Authentec Avalon Photonics AverLogic AVG AvicTek AVX AZ Displays B&B Electronics Barker Microfarads BCD BEL Fuse BI Tech. Bicron BitParts Bivar Boca Bookham Bourns Broadcom BSI Burr-Brown Bytes C&D CalCrystal Calex CalMicro Calogic Capella Carlo Gavazzi Catalyst CDI Diodes CDIL CEL Centillium Central Century Ceramate Cermetek CET Cherry Chinfa Chingis Chipcon Chrontel Cirrus CIT Clairex Clare C-Media CML CML Micro Cologne Comchip Composite Modules Conexant Connor-Winfield COSEL COSMO Cree Crydom CSR CTS Cyntec Cypress Cystech Daesan Daewoo DAICO Dallas Data Delay Datel DB Lectro DCCOM Delta Densei-Lambda Dialight Digital Voice Sys Diodes Dionics Diotec DPAC Dynex EIC Eichhoff E-Lab Elantec Electronic Devices EliteMT ELM Elmos Elpida EM Microelectronic EMC Enpirion E-OEC Eon Silicon EPCOS EPSON Ericsson ESS Tech. E-Tech Etron Eudyna Eupec Everlight Exar Excelics ExcelSemi Fagor Fairchild FCI Filtran Filtronic Fitpower Formosa Fox Electronics Freescale Frequency Devices Frequency Management FTDI Chip Fuji Fujitsu Galaxy Gamma GEC General Semiconductor Genesis Microchip Genesys Logic Gennum GHzTech Gilway G-Link GMT Golledge GOOD-ARK Grayhill Green Power GSI Hamamatsu Hanamicron Hanbit Harris HB HexaWave Hifn High Tech Chips Hirose Hi-Sincerity Hitachi Hitachi Metals Hittite HN Electronic Holtek HoltIC Honeywell Humirel HV Component Hynix Hytek Hyundai IBM IC Haus ICC I-Chips ICOM ICSI ICST IDT IK Semi. IMP Impala Infineon Initio InnovASIC Int Power Sources INTEL InterFET Interpion Interpoint Intersil Intronics IOtech IRF Isahaya ISD Isocom ISSI ITE Itran ITT IXYS Jess JGD Jiangsu Kawasaki KEC Kemet Kentron King Billion Kingbright Knox KOA Kodak Kodenshi Kyocera Kinseki Lambda Lattice Ledtech LEDtronics Legerity LEM Leshan Radio Level One LG Linear Linear Dimensions Designs Linear IS Lite-On Littelfuse Logic Devices LSI LSI Logic Lumex M.S. Kennedy M/A-COM Macroblock Macronix MagnaChip Marktech Martek Power Marvell MAS Oy MAXIM Maxwell MAZeT MCC MCE KDI MDTIC Melexis Memphis Memsic Micrel Micro Electronics Micro Linear Microchip MicroMetrics Micron Micronas Micronetics Wireless Micropac Microsemi Mimix Mindspeed Mini-Circuits Minilogic Minmax MIPS Mitel Mitsubishi Mitsumi MOSA Mosel Mospec MoSys Motorola M-pulse MtronPTI Murata Music Myson Nais NanoAmp Nanya National Instruments National Semiconductor NEC NEL NetLogic NeuriCam NHI Nichicon NIEC NJRC Noise/Com Nordic VLSI Novalog Novatek NPC NTE NTT NVE NVIDIA O2Micro Octasic OEI OKI OmniVision Omron ON Semiconductor OPTEK Opto Diode Optolab Optrex OSRAM OTAX Oxford MDi Pacific Mono Pan Jit Panasonic Para Light Patriot Scientific PCA PEAK Peregrine Performance Tech. Pericom PerkinElmer PhaseLink Philips Picker Pixim PLX PMC-Sierra PMD Motion Polyfet Power Innovations Power Integrations Power Semiconductors Powerchip Powerex Power-One Powertip Precid-Dip Promax-Johnton Pronics Protek PTC Pulse Pyramid QLogic QT Qualcomm Quantum QuickLogic R&E Raltron Ramtron Raytheon RD Alfa RDC Realtek Recom Rectron Renesas RF Monolithics RFE RFMD Rhopoint RichTek RICOH Rohm Rubycon Saifun SAMES SamHop Samsung SanDisk Sanken SanRex Sanyo SCBT Seiko SemeLAB Semicoa Semikron SemiWell Semtech Sensitron Sensory Shanghai Lunsure Shanghai Lunsure SHARP Shindengen Siemens SiGe SigmaTel Signetics Silan Silicon Image Silicon Lab. Silicon Power Siliconians Silonex Simtek Sipex Sirenza SiRF Sitronix Skyworks SLS Smartec SMSC Solid State Solitron Solomon Systech SONiX SONY Spansion SSDI SSE SST Stanford Stanley Stanson Statek STATS STMicroelectronics Sumida Summit SunLED Supertex Surge Sussex Swindon Symmetricom Synergy Synsemi Syntec System General Systron Donner Tachyonics Taiyo Yuden Talema TAOSinc TDK Teccor Tekmos TelCom Teledyne Temex TEMIC Thaler THAT Thermtrol THine TI TLSI TMT TOKO Tontek Topro Torex Toshiba Total Power Traco Transmeta Transys Trinamic Tripath TriQuint Triscend TSC Turbo IC Ubicom UMC UMS Unisem Unitra UOT Us Digital USHA UTC Utron Vaishali Valpey-Fisher Varitronix Vectron VIA Vicor VIS Vishay Vitesse Voltage Multipliers Waitrony WDC WEDC Weida Weitron Weltrend Westcode Winbond Wing Shing Winson Winstar Wisdom WJ Wolfgang Knap Wolfson WTE Xecom Xicor Xilinx YAMAHA Yellow Stone YEONHO Zarlink Z-Communications Zenic Zetex Zettler Zilog ZMD Zoran Zowie
Существенный недостаток тиристоров заключается в том, что это однополупериодные элементы, соответственно, в цепях переменного тока они работают с половинной мощностью. Избавиться от этого недостатка можно используя схему встречно-параллельного включения двух однотипных устройств или установив симистор. Давайте разберемся, что представляет собой этот полупроводниковый элемент, принцип его функционирования, особенности, а также сферу применения и способы проверки.

С помощью тестера

Проверка работоспособности симистора мультиметром или тестером основана на знании принципа работы этого устройства. Конечно же, она не даст полной картины состояния детали, так как невозможно определить рабочие характеристики симистора без сборки электрической схемы и проведения дополнительных измерений. Но часто вполне достаточно будет подтвердить или опровергнуть работоспособность полупроводникового перехода и управления им.

Чтобы проверить деталь, необходимо использовать мультиметр в режиме измерения сопротивления, то есть как омметр. Контакты мультиметра присоединяются к рабочим контактам симистора, при этом значение сопротивления должно стремиться к бесконечности, то есть быть очень большим.

После этого соединяется анод с управляющим электродом. Симистор должен открыться и сопротивление должно упасть почти до нуля. Если все так и произошло, скорее всего, симистор работоспособен.

При разрыве контакта с управляющим электродом симистор должен остаться открытым, но параметров мультиметра может быть недостаточно, что бы обеспечить так называемый ток удержания, при котором прибор остается проводимым.

Устройство можно считать неисправным в двух случаях. Если до появления напряжения на контакте управляющего электрода сопротивление симистора ничтожно мало. И второй случай, если при появлении напряжения на контакте управляющего электрода сопротивление прибора не уменьшается.

Как проверить работоспособность симистора?

В сети можно найти несколько способ, где описан процесс проверки при помощи мультиметра, те, кто описывал их, судя по всему, сами не пробовали ни один из вариантов. Чтобы не вводить в заблуждение, следует сразу заметить, что выполнить тестирование мультиметром не удастся, поскольку не хватит тока для открытия симметричного тринистора. Поэтому, у нас остается два варианта:

  1. Использовать стрелочный омметр или тестер (их силы тока будет достаточно для срабатывания).
  2. Собрать специальную схему.

Алгоритм проверки омметром:

  1. Подключаем щупы прибора к выводам T1 и T2 (A1 и A2).
  2. Устанавливаем кратность на омметре х1.
  3. Проводим измерение, положительным результатом будет бесконечное сопротивление, в противном случае деталь «пробита» и от нее можно избавиться.
  4. Продолжаем тестирование, для этого кратковременно соединяем выводы T2 и G (управляющий). Сопротивление должно упасть примерно до 20-80 Ом.
  5. Меняем полярность и повторяем тест с пункта 3 по 4.

Если в ходе проверки результат будет таким же, как описано в алгоритме, то с большой вероятностью можно констатировать, что устройство работоспособное.

Заметим, что проверяемую деталь не обязательно демонтировать, достаточно только отключить управляющий вывод (естественно, обесточив предварительно оборудование, где установлена деталь, вызывающая сомнение).

Необходимо заметить, что данным способом не всегда удается достоверно проверку, за исключением тестирования на «пробой», поэтому перейдем ко второму варианту и предложим две схемы для тестирования симметричных тринисторов.

Схему с лампочкой и батарейкой мы приводить не будем в виду того, что таких схем достаточно в сети, если вам интересен этот вариант, можете посмотреть его в публикации о тестировании тринисторов. Приведем пример более действенного устройства.

Обозначения:

  • Резистор R1 – 51 Ом.
  • Конденсаторы C1 и С2 – 1000 мкФ х 16 В.
  • Диоды – 1N4007 или аналог, допускается установка диодного моста, например КЦ405.
  • Лампочка HL – 12 В, 0,5А.

Можно использовать любой трансформатор с двумя независимыми вторичными обмотками на 12 Вольт.

Алгоритм проверки:

  1. Устанавливаем переключатели в исходное положение (соответствующее схеме).
  2. Производим нажатие на SB1, тестируемое устройство открывается, о чем сигнализирует лампочка.
  3. Жмем SB2, лампа гаснет (устройство закрылось).
  4. Меняем режим переключателя SA1 и повторяем нажатие на SB1, лампа снова должна зажечься.
  5. Производим переключение SA2, нажимаем SB1, затем снова меня ем положение SA2 и повторно жмем SB1. Индикатор включится, когда на затвор попадет минус.

Теперь рассмотрим еще одну схему, только универсальную, но также не особо сложную.

Обозначения:

  • Резисторы: R1, R2 и R4 – 470 Ом; R3 и R5 – 1 кОм.
  • Емкости: С1 и С2 – 100 мкФ х 10 В.
  • Диоды: VD1, VD2, VD5 и VD6 – 2N4148; VD2 и VD3 – АЛ307.

В качестве источника питания используется батарейка на 9V, по типу Кроны.

Тестирование тринисторов производится следующим образом:

  1. Переключатель S3, переводится в положении, как продемонстрировано на схеме (см. рис. 6).
  2. Кратковременно производим нажатие на кнопку S2, тестируемый элемент откроется, о чем просигнализирует светодиод VD
  3. Меняем полярность, устанавливая переключатель S3 в среднее положение (отключается питание и гаснет светодиод), потом в нижнее.
  4. Кратковременно жмем S2, светодиоды не должны загораться.

Если результат будет соответствовать вышеописанному, значит с тестируемым элементом все в порядке.

Теперь рассмотрим, как проверить с помощью собранной схемы симметричные тринисторы:

  • Выполняем пункты 1-4.
  • Нажимаем кнопку S1- загорается светодиод VD

То есть, при нажатии кнопок S1 или S2 будут загораться светодиоды VD1 или VD4, в зависимости от установленной полярности (положения переключателя S3).

С помощью элемента питания и лампочки

Существует вариант прозвона симистора простейшим тестером, представляющим собой разорванную однолинейную цепь с источником питания и контрольной лампой. Еще для проверки понадобится дополнительный источник питания. В качестве его может быть использован любой элемент питания, например типа АА с напряжением 1,5 В.

Прозванивать деталь нужно в определенном порядке. В первую очередь необходимо соединить контакты тестера с рабочими контактами симистора. Контрольная лампа при этом гореть не должна.

Затем необходимо подать напряжение между управляющим и рабочим электродами с дополнительного источника питания. На рабочий электрод подается полярность, соответствующая полярности подключенного тестера. При подключении контрольная лампа должна загореться. Если переход симистора настроен на соответствующий ток удержания, то лампа должна гореть и при отключении дополнительного источника питания от управляющего электрода до момента отключения тестера.

Так как прибор должен пропускать ток в обоих направлениях, для надежности можно повторить проверку, изменив полярность подключения тестера к симистору на противоположную. Надо проверить работоспособность прибора при обратном направлении тока через полупроводниковый переход.

Если до подачи напряжения на управляющий электрод контрольная лампа загорелась и продолжает гореть, то деталь неисправна. Если при подаче напряжения контрольная лампа не загорелась, симистор также считается неисправным, и использовать его в дальнейшем нецелесообразно.

Симистор, смонтированный на плате, можно проверить, не выпаивая его. Для проверки необходимо только отсоединить управляющий электрод и обесточить всю схему, отключив ее от рабочего источника питания.

Соблюдая эти простейшие правила, можно произвести отбраковку некачественных или отработавших свой ресурс деталей.

МЕНЮ САЙТАГлавная • Авто электроника • Акустика и Звук • Антенны • Бытовая электроника • Разные схемы • Телефония • Электропитание • Цифровая техника • Радиопередатчики, радиостанции • Шпионские штучки и прослушивающие устройства Компании, продающие электронику во Владивостоке, можно найти здесь! Компании, товары и услуги Владивостока Быстрый поиск принципиальных или электрических схем * спиральная антенна для т2 * кр1014кт1а схемы * реле поворотов на тиристоре * трансформатор тпн1-1 * зарядное вз1-5а * цифровая шкала макеевская прошивка * Схема зарядного устройства для аккумуляторов * журнал радио люстра чижевского * Радиосхемы для начинающих * Драгметаллы в ИВ-27МПринципиальные, электрические схемыРАДИО Доска Объявлений

Бесплатные объявления, продам, куплю, цена на РАДИОДЕТАЛИ, АНТЕННЫ, ТРАНСИВЕРЫ, ПРИЕМНИКИ, УСИЛИТЕЛИ и многое другое! Если у Вас есть
принципиальная или электрическая схема
какого-либо интересного устройства, и Вы хотите поделиться
этой схемой бесплатно с другими посетителями, то присылайте её к нам. Послать свою схему сейчасСайт для радиолюбителей : скачать принципиальные электрические схемы бесплатно. Электроника, радиоэлектроника, радиосхемы, схема устройства…

Особенности

Чтобы иметь полное представление о симметричных тринисторах, необходимо рассказать про их сильные и слабые стороны. К первым можно отнести следующие факторы:

  • относительно невысокая стоимость приборов;
  • длительный срок эксплуатации;
  • отсутствие механики (то есть подвижных контактов, которые являются источниками помех).

В число недостатков приборов входят следующие особенности:

  • Необходимость отвода тепла, примерно из расчета 1-1,5 Вт на 1 А, например, при токе 15 А величина мощности рассеивания будет около 10-22 Вт, что потребует соответствующего радиатора. Для удобства крепления к нему у мощных устройств один из выводов имеет резьбу под гайку.
  • Устройства подвержены влиянию переходных процессов, шумов и помех;
  • Не поддерживаются высокие частоты переключения.

По последним двум пунктам необходимо дать небольшое пояснение. В случае высокой скорости коммутации велика вероятность самопроизвольной активации устройства. Помеха в виде броска напряжения также может привести к этому результату. В качестве защиты от помех рекомендуется шунтировать прибор RC цепью.

Помимо этого рекомендуется минимизировать длину проводов ведущих к управляемому выводу, или в качестве альтернативы использовать экранированные проводники. Также практикуется установка шунтирующего резистора между выводом T1 (TE1 или A1) и управляющим электродом.

Схема управления мощностью паяльника

В завершении приведем простую схему, позволяющую управлять мощностью паяльника.

Обозначения:

  • Резисторы: R1 – 100 Ом, R2 – 3,3 кОм, R3 – 20 кОм, R4 – 1 Мом.
  • Емкости: С1 – 0,1 мкФ х 400В, С2 и С3 – 0,05 мкФ.
  • Симметричный тринистор BTA41-600.

Приведенная схема настолько простая, что не требует настройки.

Теперь рассмотрим более изящный вариант управления мощностью паяльника.

Обозначения:

  • Резисторы: R1 – 680 Ом, R2 – 1,4 кОм, R3 – 1,2 кОм, R4 и R5 – 20 кОм (сдвоенное переменное сопротивление).
  • Емкости: С1 и С2 – 1 мкФ х 16 В.
  • Симметричный тринистор: VS1 – ВТ136.
  • Микросхема фазового регулятора DA1 – KP1182 ПМ1.

Настройка схемы сводится к подбору следующих сопротивлений:

  • R2 – с его помощью устанавливаем необходимую для работы минимальную температуру паяльника.
  • R3 – номинал резистора позволяет задать температуру паяльника, когда он находится на подставке (срабатывает переключатель SA1),

Приборы, которые работают на потреблении электрического тока, без проблем можно настраивать. Конечно, с учётом, если на устройстве имеется уже такая возможность. Но даже если её нет, то можно сделать это самостоятельно, вмонтировав тиристорный или симисторный регулятор мощности. Самая распространённая схема включения регулировки напряжения — bt136 600e.

Ценовые категории

Сегодня на рынке имеется множество современных производителей, которые предлагают разные по качеству и цене товары. Нужно тщательно выбирать приспособление в зависимости от того, какой результат нужно получить.

Среди множества предложений обращать внимание необходимо на такие характеристики:

  1. Мощность приспособления. Чем она будет выше, тем и стоимость прибора будет больше.
  2. Сложность самой схемы. В самых простых схемах цена устройства будет зависеть от самих симисторов и ограничиваться их стоимостью. В более сложных схемах с микроконтроллером стоимость в несколько раз увеличивается. Хотя они и дают более высокие возможности, но и цена соответственно возрастает.
  3. Марка производителя. От этого параметра цена в некоторых случаях может возрастать в два раза. Но можно найти менее раскрученный бренд намного дешевле, а по своим показателям устройство будет ничем не хуже.

Таким образом, собрать тиристорный или симисторный регулятор мощности не составит особого труда даже для начинающих мастеров. Более сложной задачей будет усвоение правил его эксплуатации. Очень важным остаётся то, чтобы все вышеуказанные правила и инструкции по сборке учитывались. Это позволит сделать более качественное приспособление, которое будет бесперебойно и эффективно работать, а также приносить пользу своему владельцу.

Простой регулятор мощности на BT136 - BT 137

Простой регулятор мощности на BT136 — BT 137

Цели применения

Симисторный регулятор напряжения имеет свои особенности использования. Такие устройства бывают разной мощности и в зависимости от этого могут применяться для работы того или иного прибора.

Симисторы активно используются в таких видах бытовой техники:

Если готовить о видах симисторных регуляторов, то их объединяет одна характеристика — все они работают по похожему принципу. Единственное различие между ними — их мощность. Существуют виды симисторов, которые нужно особо тщательно регулировать при настройке управляющих сигналов. Управление у различных видов разное. Это может быть простейшая конструкция на нескольких конденсаторах и резисторах, а может быть сложная схема с микроконтроллером.

Как проверить тиристор мультиметром + видео

Тиристоры используются во многих электронных устройствах, начиная от бытовых приборов и заканчивая мощными силовыми установками. Ввиду особенностей этих полупроводниковых элементов проверить их на исправность с помощью только одного мультиметра затруднительно. В крайнем случае, можно определить пробой перехода. Для полноценного тестирования потребуется собрать несложную схему, ее описание будет приведено в статье.

Начнем с подготовительного этапа, а именно с того, что нам потребуется сделать перед проверкой.

Предварительная подготовка

Перед тестированием любого радиокомпонента будь то тиристор, транзистор или диод, нам необходимо ознакомиться с его спецификацией. Для этого находим маркировку на корпусе полупроводникового элемента.

Маркировка обозначена красным овалом

Найдя маркировку, начинаем поиск спецификации (достаточно сделать соответствующий запрос в поисковике или в тематических форумах). Даташит на электронный компонент содержит много полезной информации, начиная от технических характеристик и заканчивая расположением выводов и списком аналогов (что особенно полезно при поиске замены).

Даташит на BT151 (аналог КУ202Н)

Определившись с типом и цоколевкой, приступаем к первому этапу проверки, для этого нам понадобится только мультиметр. В большинстве случаев проверить элемент на пробой, можно не выпаивая его из платы, поэтому на данном этапе паяльник не нужен.

Тестирование на пробой

Начнем с предварительной проверки, которая будет заключаться в измерении сопротивления между выходами «К» и «УЭ», потом «А» и «К». Алгоритм наших действий будет следующим:

  1. Включаем прибор в режим «прозвонки» и снимаем измерения с перехода между выводами «К» и «УЭ», в соответствии с рисунком 3. Если полупроводник исправен, отобразится сопротивление перехода в диапазоне от 40 Ом до 0,55 кОм.

    Рис 3. Измеряем сопротивление между УЭ и К
  2. Меняем щупы местами и повторяем процесс, результат должен быть примерно таким же, как в пункте 1. Заметим, что чем больше сопротивление между выводами «УЭ» и «К», тем меньше ток открытия, а значит — выше чувствительность устройства.
  3. Меряем сопротивление между выводами «А» и «К» (см. рис. 4). На индикаторе мультиметра должно высветиться бесконечно большое сопротивление, причем, вне зависимости от полярности подключенного измерительного устройства. Иное значение указывает на пробой в переходе. Для «чистоты» проверки лучше выпаять подозрительную деталь и повторить тестирование.

Рис 4. Измеряем сопротивление перехода  Анод-Катод

Как уже упоминалось выше, такая методика проверки мультиметром не позволяет полностью протестировать работоспособность тиристора, нам потребуется несколько усложнить процесс.

Проверка на открытие-закрытие

Предыдущее тестирование позволяет определить, имеется ли пробой, но не дает возможности проверить отсутствие внутреннего обрыва. Поэтому переводим мультиметр в режим «прозвонки» и подключаем к нему тиристор, в соответствии с рисунком 5 (щуп с черным проводом к выводу «К», красный — к «А»).

Рис. 5. Подключение для проверки на открытие

При таком подключении отобразится бесконечно большое сопротивление. Теперь соединяем на несколько мгновений «УЭ» с выходом «А», прибор покажет падение сопротивления, и после отключения «УЭ», показание опять вырастет до бесконечности. Это связано с тем, что идущего через щупы тока недостаточно для удержания тиристора в открытом состоянии. Поэтому, чтобы убедиться в работоспособности полупроводникового элемента, необходимо собрать несложную схему.

Самодельный пробник для тиристоров

В интернете можно найти более простые схемы, где используется только лампочка и батарейка, но такой вариант не совсем удобен. На рисунке 6 представлена схема, позволяющая протестировать работу устройства, подавая на него постоянное и переменное питание.

Рисунок 6. Пробник для тиристоров

Обозначения:

  • Т1 – трансформатор, в нашем случае использовался ТН2, но подойдет любой другой, если у него имеется вторичная обмотка 6,3 V.
  • L1 – обычная миниатюрная лампочка на 6,3 V и 0,3 А (например, МН6,3-0,3).
  • VD1 – выпрямительный диод любого типа с обратным напряжением более 10 вольт и током от 300 мА и выше (например, Д226).
  • С1 – конденсатор емкостью 1000 мкФ, и рассчитанный на напряжение 16 В.
  • R1 – сопротивление с номиналом 47 Ом.
  • VD2 – тестируемый тиристор.
  • FU1 – предохранитель на 0,5 А, если в схеме для проверки тиристоров используется мощный силовой трансформатор, номинал предохранителя нужно увеличить (узнать потребляемый ток можно воспользовавшись мультиметром).

После того, как пробник собран, приступаем к проверке, выполняется она по следующему алгоритму:

  1. Подключаем к собранному прибору тестируемый полупроводниковый элемент (например, КУ202Н), в соответствии с рисунком 5 (для определения цоколевки следует обратиться к справочной информации).
  2. Переводим переключатель S2 для тестирования в режиме постоянного тока (положение «2»).
  3. Включаем пробник тумблером S1, индикатор L1 не должен засветиться.
  4. Нажимаем S3, в результате на «УЭ» подается напряжение через резистор R1, что переводит тиристор в открытое состояние, на индикаторную лампочку поступает напряжение, и она начинает светиться.
  5. Отпускаем S3, поскольку полупроводниковый элемент остается открытым, лампочка продолжает гореть.
  6. Меняем положение переключателя, переводя его в положение «О», тем самым мы отключаем питание от тиристора, в результате он закрывается и лампа гаснет.
  7. Теперь проверяем работу элемента в режиме переменного напряжения, для этой цели переводим S2 в положение «1». Благодаря такой манипуляции мы берем питание непосредственно со вторичной обмотки трансформатора (до выпрямительного диода). Индикаторная лампа не горит.
  8. Нажимаем S3, лампа начинает светиться в половину своей мощности, это связано с тем, что при открытии через тиристор проходит только одна полуволна переменного напряжения. Отпускаем S3 – индикаторная лампочка гаснет.

Если тестируемый элемент вел себя так, как описывается, то можно констатировать, что он находится в рабочем состоянии. Соответственно, если индикатор горит постоянно, это указывает на пробой, а когда при нажатии S3 он не загорается, можно определить внутренний обрыв (при условии, что лампочка рабочая).

Проверка без выпаивания детали с платы

В большинстве случаев проверить тиристор мультиметром на пробой можно прямо на плате, но чтобы выполнить диагностику самодельным тестером, полупроводник придется выпаять.

www.asutpp.ru

Как проверить симистор мультиметром на исправность

У каждого уважающего себя мастера, да и просто увлекающегося электроникой человека в хозяйстве есть мультиметр, который позволяет довольно часто экономить на покупке новых деталей.

Симистор, так же его называют триак — это особая вариация симметричного тиристора. Одним из основных отличий — возможность проводить ток в обоих направлениях, что позволяет использовать эксплуатировать радиоэлемент в системах, где присутствует переменное напряжение. В работе с электроприборами и схемами просто невозможно обойтись без таких электрических деталей.

По функциям работы и конструкции он ни чем не отличается от других тиристеров. Симисторы хорошо себя зарекомендовали как регуляторы для систем освещения, так же для приборов которые используются в бытовых условиях Еще его используют в огромном количестве отраслей производства.

Концепция этих компонентов чем-то напоминает работу транзистеров, но данные детали не будут взаимозаменяемы.

Как прозвонить тиристор мультиметром?

Когда подается ток (достаточно простой батарейки АА) — лампочка будет сиять. Из этого следует, что сама цепь не подвержена повреждениям. Затем следует отделить батарейку, но при этом не отключить подачу тока. Если лампочка не гаснет, а продолжает гореть, то p-n переход не поврежден и работает исправно.

Но бывает и такое, что в самый нужный момент под рукой не окажется нужной лампочки или батарейки. Остается проверить его мультиметром.

  1. Нужно установить переключатель на нашем приборе в режим прозвона. На щупах появится достаточно тока, для проверки работоспособности. На экране высветилась цифра 1, в таком случае мы понимаем, что переход не пробит и не поврежден.
  2. Нужно проверить открывается ли переход. Для этого нужно соединить управляющий вывод с анодом. Мультиметр даст достаточное количество тока для этого. На экране должны появится цифры, которые будут отличаться от первоначальной единицы. Так мы проверим работоспособность управляющего элемента.
  3. Разъединяем контакт управления. На экране увидим цифру «один», так как сопротивление будет склоняться к бесконечности.

Почему тиристор не остался в открытом состоянии?

Ситуация заключается в следующем — мультиметр не вырабатывает достаточное количество тока для того, что бы сработал тиристор. Исходя из этого, провести проверку данного элемента не выйдет. Но сама проверка показала, что остальные детали у нас в рабочем состоянии. Если же поменять полярность — проверка закончится провалом. В данной ситуации мы уверены,что отсутствует обратный пробой.

Так же при помощи аппарата, можно легко проверить чувствительность тиристора. Для этого нужно поставить переключатель в режим омметра. Все измерения проходят так же, как описывалось выше.

Тиристоры которые более чувствительны выдерживают открытое состояние при отключении управляющего тока, все данные мы фиксируем на мультиметре. Затем повышаем предел до 10х. В этой ситуации ток на щупах будет уменьшен.

Если управляющий ток при закрытии, отказывает, нужно постепенно увеличить предел измерения, до тех пор, пока не сработает тиристор.

Если проверка проходит элементов из одной партии или со схожими техническими характеристиками, нужно выбирать те элементы, которые более чувствительны. Такие тиристоры более функциональны и имеют больше возможностей, из этого следует что область применения в разы увеличивается.

Когда вы освоите проверку тиристора, то решение проверки симистора придет само. Главное вникнуть в суть проверки, и четко следовать инструкциям.

Проверка симистора мультиметром

Делаем все тоже, о чем говорилось выше. Можем применять лампу накаливания, включив мультиметр в режиме омметра.

Если симистор исправен и функционирует, то результаты проверки должны быть схожими между собой. Необходимо проверить открытие и удержание p-n перехода в обоих направлениях по всей шкале пределов измерения мультиметра.

Если проверяемая деталь располагается на монтажной плате, то нет явной необходимости выпаивать ее, для того, чтобы провести проверку. Нужно всего лишь освободить управляющий вывод. Одно из главных правил! Перед проверкой обязательно обесточьте проверяемый прибор, так как результат проверки, может оказаться неверным.

Заключение

Как мы видим, проблем в проверке у любого мастера быть не должно. Относительно проверки, можно добавить, то что проверять лучше всего симистор с обеих сторон, так как он работает как с одной, так и с другой стороны. Нужно все лишь изменить полярность на противоположную сторону. Если деталь исправна, то соответственно она будет работать с двух противоположных сторон.

vseotoke.ru

Как проверить тиристор | Практическая электроника

Как проверить тиристор, если вы полный чайник? Итак, обо всем по порядку.

Принцип работы тиристора

Принцип работы тиристора основан на принципе работы электромагнитного реле. Реле – это электромеханическое изделие, а тиристор – чисто электрическое. Давайте же рассмотрим принцип работы тиристора, а иначе как мы его тогда сможем проверить? Думаю, все катались на лифте ;-). Нажимая кнопку на какой-нибудь этаж, электродвигатель лифта начинает свое движение, тянет трос с кабиной с вами  и  соседкой тетей Валей килограммов под двести и  вы перемещаетесь с этажа на этаж.  Как  же так с помощью малюсенькой кнопочки мы подняли кабину с тетей Валей на борту?

В этом примере и основан принцип работы тиристора.  Управляя маленьким напряжением кнопочки мы управляем большим напряжением… разве это не чудо? Да еще и в тиристоре нет никаких клацающих контактов, как в реле. Значит, там нечему выгорать и при нормальном режиме работы такой тиристор прослужит вам, можно сказать, бесконечно.

Тиристоры выглядят  как-то вот так:

А вот и  схемотехническое обозначение тиристора

В настоящее время мощные тиристоры используются для переключения (коммутации) больших напряжений в электроприводах, в установках плавки металла с помощью электрической дуги ( короче говоря с помощью короткого замыкания, в результате чего происходит такой мощный нагрев, что даже начинает плавиться металл)

Тиристоры, которые слева, устанавливают на алюминиевые радиаторы, а тиристоры-таблетки даже на радиаторы с водяным охлаждением, потому что через них проходит бешеная сила тока и коммутируют они очень большую мощность.

Маломощные тиристоры используются в радиопромышленности и, конечно же, в радиолюбительстве.

Параметры тиристоров

Давайте разберемся с некоторыми важными параметрами  тиристоров. Не зная эти параметры, мы не догоним принцип проверки тиристора. Итак:

1) Uy отпирающее постоянное напряжение управления  – наименьшее постоянное напряжение на управляющем электроде, вызывающее переключение тиристора из закрытого состояния в открытое. Короче говоря простым языком, минимальное напряжение на управляющем электроде, которое открывает тиристора и электрический ток начинает спокойно себе течь через два оставшихся вывода – анод и катод тиристора. Это и есть минимальное напряжение открытия тиристора.

2) Uобр max –  обратное напряжение, которое может выдержать тиристор, когда, грубо говоря, плюс подают на катод, а минус – на анод.

3) Iос ср среднее значение тока, которое может протекать через тиристор  в прямом направлении без вреда для его здоровья.

Остальные параметры не столь критичны для начинающих радиолюбителей. Познакомиться с ними можете в любом справочнике.

Как проверить тиристор КУ202Н

Ну и наконец-то переходим к самому важному – проверке тиристора. Будем проверять самый ходовый и знаменитый советский тиристор – КУ202Н.

А вот и его цоколевка

Для проверки тиристора нам понадобится лампочка, три проводка и блок питания с постоянным током. На блоке питания выставляем напряжение загорания лампочки. Привязываем и припаиваем проводки к каждому выводу тиристора.

На анод подаем “плюс” от блока питания, на катод через лампочку “минус”.

Теперь же нам надо подать относительно анода напряжение на Управляющий Электрод (УЭ). Для такого вида тиристора Uy отпирающее постоянное напряжение управления  больше чем 0,2 Вольта.  Берем полуторавольтовую батарейку и подаем напряжение на УЭ. Вуаля! Лампочка зажглась!

также можно использовать щупы мультиметра в режиме прозвонки, на щупах напряжение тоже больше 0,2 Вольта

Убираем батарейку или щупы, лампочка должна продолжать гореть.

Мы открыли тиристор с помощью подачи на УЭ импульса напряжения.  Все элементарно и просто! Чтобы тиристор опять закрылся, нам надо или разорвать цепь, ну то есть отключить лампочку или убрать щупы, или же подать на мгновение обратное напряжение.

Как проверить тиристор мультиметром

Можно также проверить тиристор с помощью мультиметра. Для этого собираем его по этой схемке:

Так как на щупах мультиметра в режиме прозвонки имеется напряжение, то подаем его на УЭ. Для этого замыкаем между собой анод и УЭ и сопротивление через Анод-Катод тиристора резко падает.  На мультике мы видим 112 милливольт падение напряжения. Это значит, что он открылся.

После отпускания мультиметр снова показывает бесконечно большое сопротивление.

Почему же тиристор закрылся? Ведь лампочка  в прошлом примере у нас горела? Все дело в том, что тиристор закрывается, когда ток удержания стает очень малым. В мультиметре ток через щупы очень малый, поэтому и тиристор закрылся без напряжения УЭ.

Есть также схема отличного прибора для проверки тиристора, ее можно глянуть в этой статье.

Также советую глянуть видео от ЧипДипа про проверку тиристора и ток удержания:

www.ruselectronic.com

Как проверить симистор? — Diodnik

Симмистор часто встречается в схемах регулировки тока. Фактически в любом бытовом устройстве, будь то пылесос или дрель, находится схема управления нагрузкой с помощью симмистора. В ремонте подобной бытовой техники очень важно знать, исправен ли симмистор или нет.

Как проверить симистор?

Многие задают простой вопрос, как проверить симистор мультиметром, наивно думая, что такой способ самый верный и точный. Для проверки на исправность симмистора можно использовать простенькую схему, и тогда, со стопроцентной уверенностью можно оставить или отбраковать проверяемую деталь.

Данную схему мы собрали на макетной плате и постараемся описать принцип проверки симмистора.

Испытуемый симмистор — BTA16.

В исходном состоянии симмистор будет закрыт даже при подключенном источнике питания. Когда управляющий вывод на долю секунды замыкается с плюсовым выводом питания, то светодиод загорится, и будет гореть до тех пор, пока будет напряжение на источнике питания или пока мы опять не замкнем управляющий вывод на положительный полюс питания.

Схема простая и точная, она сразу даст возможность не только проверить симмистор, но и поможет понять новичкам принцип его работы.

Вконтакте

Facebook

Twitter

Одноклассники

comments powered by HyperComments

diodnik.com

Как проверить тиристор мультиметром: виды, тестирование, инструкция, питание

Прежде потрудитесь узнать, как работает тиристор. Заимейте представление о разновидностях: триак, динистор. Требуется правильно оценить результат теста. Ниже расскажем, как проверить тиристор мультиметром, даже приведем небольшую схему, помогающую выполнить задуманное в массовом порядке.

Разновидности тиристоров

Тиристор

Тиристор отличается от биполярного транзистора наличием большего количества p-n переходов:

  1. Типичный тиристор p-n переходов содержит три. Структуры с дырочной, электронной проводимостью чередуются на манер зебры. Можно встретить понятие n-p-n-p тиристор. Присутствует или отсутствует управляющий электрод. В последнем случае получаем динистор. Работает по приложенному меж катодом и анодом напряжением: при некотором пороговом значении открывается, начинается спад, ход электронам отсекается. Что касается тиристоров с электродами, управление производится в любом из двух срединных p-n переходов – стороны коллектора, либо эмиттера. Коренное отличие изделий от транзистора в неизменности режим после пропадания управляющего импульса. Тиристор остается открытым, пока ток не упадет ниже фиксированного уровня. Обычно называют током удержания. Позволяет строить экономичные схемы. Объясняет популярность тиристоров.
  2. Симисторы отличаются количеством p-n переходов, становится больше минимум на один. Способны пропускать ток в обоих направлениях.

Начало тестирования тиристора мультиметром

Сначала потрудитесь расположение электродов определить:

  • катод;
  • анод;
  • управляющий электрод (база).

Для открытия тиристорного ключа катод прибора снабжается минусом (черный щуп мультиметра), на анод присоединяется плюс (красный щуп мультиметра). Тестер выставляется в режим омметра. Сопротивление открытого тиристора невелико. Хватит поставить предел 2000 Ом. Пришло время напомнить: тиристор способен управляться (открываться) положительными или отрицательными импульсами. В первом случае перемычкой из тонкой булавки замыкаем на базу анод, втором – катод. Тут и там должен тиристор открыться, в результате сопротивление станет меньше бесконечности.

Процесс тестирования сводится к пониманию, каким напряжением управляется тиристор. Минусовым или плюсовым. Попробуйте так и сяк (если отсутствует маркировка). Одна попытка точно сработает, если тиристор исправен.

Дальше процесс расходится с проверкой транзистора. При пропадании управляющего сигнала тиристор останется открытым, если ток превышает порог удержания. Ключ может закрыться. Если ток не дотягивает порога удержания.

  1. Ток удержания прописан техническими характеристиками тиристора. Потрудитесь скачать из интернета полную документацию, быть в курсе вещей.
  2. Многое определяет мультиметр. Какое напряжение подает на щупы (традиционно 5 вольт), сколько мощности обеспечит. Проверить можно, заручившись помощью конденсатора большой емкости. Нужно правильно подключить щупы на выводы прибора в режиме измерения сопротивления, подождать, пока цифры на дисплее вырастут от нуля до бесконечности. Конденсатор процесс зарядки прошел. Теперь перейдем в режим измерения постоянного напряжения посмотреть величину разницы потенциалов на ножках конденсатор (мультиметр подает в режиме измерения сопротивления). По вольт-амперным характеристикам тиристора несложно определить, хватит ли значения создать ток удержания.

Динисторы звонятся проще. Попытайтесь открыть ключ. Зависит от того, хватит ли мощности мультиметра преодолеть барьер. Для гарантированной проверки тиристора лучше собрать отдельную схему. Наподобие представленной рисунком. Схеме сформирована следующими элементами:

  1. Три резистора послужат заданию режима тиристора. Один номиналом 300 Ом ограничивает ток. Если параметр нужно изменить, перестараться при наличии питания +5 вольт чрезвычайно сложно. Ничего страшного, если резистор убрать. Старайтесь руководствоваться вольт-амперными характеристиками тиристора. Идеально поставить переменный резистор диапазоном 100 – 1000 Ом. Два резистора правой ветки задают рабочую точку. В схеме на управляющий электрод подано 2,5 вольта. Если не согласуется с вольт-амперными характеристиками тиристора (см. документацию), измените номиналы. Образуют резистивный делитель. Напряжение 5 вольт делится пропорционально номиналам. Поскольку сопротивления равны друг другу, на управляющий электрод приходит ровно половина напряжения питания.
  2. Светодиод послужит нагрузкой. Стоит в «силовой» ветке, рядом находятся эмиттер, коллектор. Здесь после открытия ключа должен течь ток. Светодиод загорится, увидим, работает ли тиристор. Светодиод не инфракрасный. Возьмите видимый диапазон.

    Схема проверки тиристора

  3. Тиристор образует центр схемы. Лучше спаять гнезда, куда можно быстро воткнуть новый испытуемый образец. Иначе пропадает смысл городить огород. Обратите внимание, схема собрана для случая, когда тиристор управляется напряжением положительной полярности. Лучше найти отдельно источник питания. Например, батарейка, системный блок ПК, аккумулятор. Положительным полюсом стыкуются с землей схемы, отрицательный подается на базу. Причем придется убрать резистора из левой ветви.
  4. Кнопка поможет узнать гарантированно: эксперимент начался. Без нее управляющего напряжения не подается. Стоит нажать кнопку, отпустить – пронаблюдаете результат. Светодиод загорится и погаснет – ток удержания не выдержан, тиристор исправен. Иногда светодиод будет продолжать гореть, зависит от его характеристик.

Почему выбрали питание +5 вольт. Напряжение несложно найти на адаптере телефона (зарядное устройство). Присмотритесь: присутствует надпись наподобие 5V– /420 mA. Выходные значения напряжения, тока (сразу посмотрите, хватит ли удержать тиристор). Каждый знаток в курсе: +5 вольт доступно взять на шине USB. Портом снабжается теперь (в разном формате) практически любой гаджет, компьютер. С питанием проблем избегните. На всякий случай рассмотрим момент подробнее.

Проверка тиристоров на разъеме мультиметра для транзисторов

Многих интересует, возможно ли прозвонить тиристор мультиметром, используя штатное гнездо проверки транзисторов передней панели, обозначенное pnp/npn. Ответ положительный. Нужно просто подать правильно напряжения. Коэффициент усиления, выданный на дисплей, наверняка будет неверным. Поэтому руководствоваться цифрами избегайте. Давайте посмотрим, как примерно делается. Если открывается тиристор положительным потенциалом, подключать нужно на пин B (base) полугнезда npn. Анод втыкается на пин C (коллектор), катод – E (emitter). Едва ли удастся проверить мощный тиристор мультиметром, для микроэлектроники методика сгодится.

Где взять питание тестировщику

Положение электродов мультиметра

Адаптер телефона дает ток 100 – 500 мА. Часто бывает мало (если понадобится проверить тиристор КУ202Н мультиметром, отпирающий ток 100 мА). Где взять больше? Посмотрим шину USB: третья версия выдаст 5 А. Чрезвычайно большой ток для микроэлектроники, бросьте сомневаться в мощностных характеристиках интерфейса. Распиновку посмотрим в сети. Приводим рисунок, указывающий раскладку типичных портов USB. Показаны два типа интерфейсов:

  1. Первый USB тип А характерен компьютерам. Максимально распространенный. Найдете на адаптерах (зарядных устройствах) портативных плееров, iPad. Можно использовать в качестве источников питания схемы тестирования тиристора.
  2. Второй тип В характерен больше как концевой. Подключаются периферийные устройства наподобие принтеров, прочей оргтехники. Найти в качестве исходного источника питания сложно, игнорируя факт недоступности, авторы проверили раскладку.

Если кабель USB разрезать – уверены, многие ринутся курочить старую технику, обрывать хвосты мышкам – внутри провод питания +5 вольт традиционно красный, оранжевый. Информация поможет правильно прозвонить схему, добыть нужное напряжение. Присутствует на выключенном системном блоке (к розетке подсоединено). Вот почему огонек мышки продолжает гореть. На время теста компьютер достаточно будет ввести в режим гибернации. Кстати, напрямую не имеется в Windows 10 (полазить по настройкам, найдете в управлении энергопотреблением).

Раскладка портов USB

Заручившись помощью схемы, проверим тиристор, не выпаивая. Рабочая точка задана относительно земли порта, поэтому внешние устройства будут играть малую роль. Традиционно заземление персонального компьютера завязано на корпус, куда выходит провод входного фильтра гармоник. Схемные +5 вольт, земля развязаны с шиной. Достаточно тестируемую схему отключить от питания. Для проверки тиристора понадобится напаять усики на каждый вывод. Чтобы подвести питание, управляющий сигнал.

Многие, елозят на стуле, не понимая одной вещи: тут рассказываем, как прозвонить тиристор мультиметром, причем здесь светодиод плюс все навороты? Место светодиода можно – даже лучше – включить щупы тестера, регистрировать ток. Удается использовать малое напряжение питания, всегда безопаснее одновременно. Что касается персонального компьютера, дает широкие возможности тестирования любых элементов, включая тиристоры. Блок питания системника дает набор напряжений:

  1. +5 В идет кулерам, многим другим системам. Фактически стандартное напряжение питания. Провода вольтажа красного цвета.
  2. Напряжение +12 вольт используется для питания многих потребителей. Провод желтого цвета (не путать с оранжевым).
  3. – 12 вольт оставлено обеспечить совместимость с RS. Старый добрый COM-порт, через который сегодня программируются адаптеры промышленных систем. Некоторые источники бесперебойного питания. Провод обычно синий.
  4. Оранжевый провод обычно несет напряжение +3,3 В.

Видите, разброс великий, главное – ток. Мощность блоков питания компьютеров колеблется в области 1 кВт. Откроет любой тиристор! Пора пришла заканчивать. Надеемся, теперь читатели знают, как проводится прозвонка тиристора мультиметром. Иногда придется повозиться. Упомянутый выше тиристор КУ202Н снабжен структурой pnpn, незапираемый. После пропадания управляющего напряжения ключ не закрывается. Нужно убрать питание, чтобы погас светодиод. Отпирающее напряжение положительное. Подходит схеме. Единственно, ток удержания составляет 300 мА. Случай, когда не любой телефонный зарядник годится провести опыт.

vashtehnik.ru

Как проверить тиристор мультиметром на примере прозвона ку202н

Тиристор – это полупроводниковый прибор p-n-p-n структуры, который играет роль ключа в цепях с большими токами, при этом управление им осуществляется слаботочным сигналом. Применяется для включения силовых электроприводов, систем возбуждения генераторов. Коммутируемые токи доходят до 10 кА.

Особенность тиристоров заключается в том, что при подаче управляющего сигнала, они открываются и остаются в этом состоянии, даже если сигнал в последующем будет снят. Единственное требование – протекающий через них ток должен превышать определенное значение, который называется током удержания.

Одни тиристоры пропускают ток только в одну сторону. Это динисторы, срабатывающие от превышения значимого напряжения. Есть также тринисторы, управляемые подачей тока на третий вывод прибора.

Тиристоры пропускающие ток в обе стороны называются симисторы или триаки. Кроме этого, бывают фототиристоры управляемые светом.

Основные характеристики

Для проверки тринистора необходимо знать и понимать, что скрывается за основными параметрами и для чего их нужно измерять.

Отпирающее напряжение управления Uy – это постоянный потенциал на управляющем электроде, вызывающий открывание тиристора.

Uобр max – это максимальное обратное напряжение, при котором тиристор еще находится в рабочем состоянии.

Iос ср – это среднее значение протекающего через тиристор тока в прямом направлении с сохранением его работоспособности.

Определение управляющего напряжения

Теперь можно приступать к тестированию тринистора. Для этого возьмем КУ202Н с рабочим током 10 А и напряжением 400 В.

У большинства радиолюбителей имеется мультиметр и неизбежно возникает вопрос, как проверить тиристор мультиметром, возможно ли это и, что дополнительно может понадобиться. Последовательность действий такая:

  • для начала переключаем мультиметр в положение измерения сопротивления с диапазоном 2 кОм. В этом режиме на измерительных щупах будет присутствовать напряжение внутреннего источника питания тестера;
  • подключаем щупы к аноду и катоду тринистора. Мультиметр должен показывать сопротивление близкое к бесконечности;
  • перемычкой замыкаем анод и управляющий электрод. Сопротивление должно упасть, тринистор открылся;
  • убираем перемычку, прибор опять показывает бесконечность. Это произошло из-за того, что удерживающий ток слишком мал.

Так как тиристор управляется как отрицательными, так и положительными сигналами, то его можно открыть, подключая перемычкой управляющий электрод к катоду.

Мультиметр должен находиться в режиме омметра, и щупы подсоединены к аноду и катоду. Так можно определить, каким напряжением управляется тиристор.

Проверка исправности

Второй вариант тестирования заключается в следующем. К блоку питания постоянного тока через тринистор подключается лампа на это же напряжение.

К аноду и катоду подключается мультиметр в режиме измерения постоянного напряжения. Диапазон измерения должен превышать напряжение источника.

Затем на управляющий электрод с помощью батарейки любого номинала и пары проводов подается управляющее напряжение. Тринистор должен открыться, лампочка загореться.

Тестер сначала показывает напряжение источника питания, после воздействия маленького значения, которое соответствует падению потенциалов на тиристоре в открытом состоянии.

После этого можно снять управляющее воздействие, лампа продолжит гореть, так как протекающий через прибор ток больше тока удержания.

Проверка динистора

Для определения работоспособности динистора может потребоваться источник питания с напряжением, превышающим напряжение включения динистора.

Для ограничения тока потребуется резистор на 100-1000 Ом. Теперь можно подключать плюс источника к аноду, а катод к одному из выводов ограничивающего резистора.

Второй конец сопротивления подключается к минусу источника питания. До этого необходимо мультиметр в режиме измерения постоянного напряжения подключить к аноду и катоду.

Значения тестера должны лежать в пределах милливольт. Динистор открылся.

Необычный способ

Есть еще один вариант проверки тиристора мультиметром, без прозвона. Но в этом случае прибор должен быть маломощным, с малым током удержания.

Для проверки используется разъем проверки транзисторов. Обычно он располагается ниже переключателя и представляет собой круглый разъем в диаметре примерно 1 см.

На нем должны быть следующие обозначения: В – означает база транзистора, С – коллектор, Е – эмиттер.

Если тринистор открывается положительным напряжением, то управляющий вывод надо подключить к базе, анод с катодом к коллектору и эмиттеру соответственно.

Так как тестер при проверке транзистора измеряет коэффициент усиления, то и в этом случае он выдаст какие-то значения, которые будут неверные. Но это не важно, главное убедиться в исправности тринистора.

Проверка в схеме

Иногда требуется проверка тиристора, без выпаивания его из схемы. Для этого необходимо отключить управляющий электрод. После этого к аноду и катоду подключается мультиметр в режиме измерения постоянного напряжения.

Вторым тестером подключаются к аноду и управляющему электроду тиристора. Второй прибор должен находиться в режиме омметра.

Если измерительные щупы подсоединены правильно, то показания первого тестера будут лежать в пределах нескольких десятков милливольт.

Если нет, то щупы нужно поменять местами и все повторить. Перед измерениями нужно убедиться, что плата и весь прибор обесточен.

Тестирование высоковольтного тиристора

В случае проверки высоковольтного тиристора потребуется мультиметр с токовыми клещами. И проверка будет производиться при включенном оборудовании, так как сложно создать условия имитирующие рабочие параметры системы.

Все внешние воздействия необходимо делать в соответствии с инструкцией по эксплуатации на оборудование.

Измерения делаются с соблюдением техники безопасности, в остальном все, как и с обычными тиристорами.

evosnab.ru

Как проверить тиристор и симистор мультиметром

Устройство, принцип действия и параметры тиристоров

Перед тем как проверить тиристор или симистор мультиметром необходимо немного знать о работе этих элементов, чтобы правильно представлять сам процесс проверки. Если диод имеет только один p-n переход и два вывода, то тиристор имеет три p-n перехода и три вывода. Принцип работы тиристора схож с работой электромеханического реле.

Устройство тиристора

При подаче напряжения на катушку, контакты реле замыкаются и пропускают токи большой величины. Такой же принцип работы и у электронного ключа — тиристора. На управляющий электрод подаётся управляющее напряжение до 10 В, открываются p-n переходы и пропускают большие токи, которые зависят от мощности тиристоров.

По сравнению с электромеханическим реле у тиристора нет дребезга контактов. Бесшумная работа электронного ключа и хорошая совместимость с любой электронной схемой, главные достоинства тиристоров. Используется тиристоры и симисторы там, где нужна регулировка больших токов.

Тиристоры также могут работать от светового луча, если в качестве управляющего электрода использовать фотоэлемент. Такой электронный ключ называется фототиристором. Если тиристор пропускает только положительную полуволну переменного напряжения, то симистор прозрачен для токов в обоих направлениях, т. е. он рассчитан на работу с переменным напряжением. К основным параметрам электронного ключа относятся:

  1. Iоткр.max — максимально допустимый ток тиристора.
  2. Uу — напряжение открывания.
  3. Uобр.max — наибольшее обратное напряжение элемента.
  4. Iуд — ток удержания в открытом состоянии ключа.

Как проверить тиристор мультиметром

Проверить работоспособность тиристора можно батарейкой или источником питания и лампочкой. Для проверки напряжение источника питания или батарейки должны соответствовать напряжению питания лампочки. Если плюс источника приложить к аноду элемента, минус через лампочку подать на катод, а батарейку приложить плюсом к управляющему электроду, а минусом к аноду, то исправный тиристор откроется и лампочка загорится.

Схема проверки тиристора с дополнительным источником питания и батарейкой

Если убрать напряжение с управляющего электрода ключа лампочка не погаснет. Чтобы она погасла нужно снять напряжение источника питания с тиристора, или кратковременно изменить полярность управляющего напряжения. Лампочка не гаснет после снятия напряжения с управляющего электрода, потому что через тиристор протекает ток выше его тока удержания.

Определить ток удержания можно, если плавно снижать напряжение блока питания и через амперметр проконтролировать ток, при котором произойдет отключение лампочки. Таким образом, можно выбрать тиристор с наименьшим током удержания. Проверить работоспособность тиристора можно также одним мультиметром.

Прозвонка тиристора мультиметром

Переключатель режима измерения ставят в положение проверки диодов и проверяют сопротивление перехода УЭ — катод в обоих направлениях, оно должна быть в пределах от 50 до 500 ом. Электронный ключ с наибольшим сопротивлением перехода УЭ — катод будет более чувствительный, с меньшим напряжением, при котором тиристор откроется. Сопротивление катод — анод должно быть большим, на дисплее отображается 1.

Мы прозвонили тиристор мультиметром, а теперь проверим его на открытие перехода анод — катод. Плюс щупа мультиметра присоединяют к аноду, а минус к катоду. В положении X1 переключателя замыкают управляющий электрод на анод элемента. При исправном электронном ключе мультиметр показывает несколько десятков ом, т. е. тиристор открылся.

При отсоединении электрода от анода, тиристор закроется и мультиметр покажет единицу. При проверке мультиметром его ток меньше тока удержания ключа, поэтому тиристор закрывается. Удобно проверять электронные ключи на схеме ниже.

Схема проверки тиристора с дополнительным источником питания

В качестве источника используют блок питания или автомобильный аккумулятор. Подключают к схеме тиристор, подают питание на него кнопкой КН-1 и подключают УЭ кнопкой КН-2. Лампочка загорается. Отключают КН-2, лампочка продолжает гореть, т. к. ток удержание элемента ниже, чем ток источника питания. Кнопкой КН-1 отключают источник питания, лампочка гаснет. Для источника питания 25 В сопротивление резистора 270 Ом. Для других напряжений питания:

R = (0,9 — 1)Uпит/Iу.откр, где Iу.откр — ток удержания управляющим электродом (в справочнике)

Если в этой же схеме заменить источник постоянного напряжения, на трансформатор, с необходимым переменным напряжением вторичной обмотки, т. е. будем подавать переменное напряжение на тиристор, то лампочка будет гореть в половину накала, ведь этот элемент пропускает только положительную полуволну переменного напряжения. Для источника питания 25 В сопротивление резистора 270 Ом.

Если подключить симистор, то лампа загорится ярко, т. к. симистор пропускает полное переменное напряжение. Симистор проверяется по той же методике что и тиристор. Проверить тиристор и симистор мультиметром не выпаивая, не получится. Для полной проверки этих ключей нужно подавать постороннее напряжение на электронную схему, что чревато выходом ее элементом из строя.

Тоже интересные статьи

electricavdome.ru


Рис. 1 Цоколевка симистора BT134

BT134 выпускается в пластмассовом корпусе типа SOT-82. Симисторы BT134 серии применяются в схемах управления электродвигателями, в промышленных и бытовых осветительных приборах, студийных вспышках, операторский свет для видеосъемки, в электронагревательных приборах и другой бытовой технике.

Система обозначений симисторов, тиристоров, динисторов BT выпускаемых компанией Philips

1. ВТ — симистор Philips

3. не обозначается для серии 134, тип корпуса симисторов BT134 — SOT-82

4. Макс. напряжение, В

5. Ток отпирания управляющего электрода: не обозначается – 35 мА, B – 50 мА, D – 5 мА, E – 10 мА, F – 25 мА


Рис. 1 Цоколевка симистора BT134

BT134 выпускается в пластмассовом корпусе типа SOT-82. Симисторы BT134 серии применяются в схемах управления электродвигателями, в промышленных и бытовых осветительных приборах, студийных вспышках, операторский свет для видеосъемки, в электронагревательных приборах и другой бытовой технике.

Система обозначений симисторов, тиристоров, динисторов BT выпускаемых компанией Philips

1. ВТ — симистор Philips

3. не обозначается для серии 134, тип корпуса симисторов BT134 — SOT-82

4. Макс. напряжение, В

5. Ток отпирания управляющего электрода: не обозначается – 35 мА, B – 50 мА, D – 5 мА, E – 10 мА, F – 25 мА

Сгорел паяльник из китая с регулировкой температуры. Уверен у многих такой есть) Как оказалось это BT134 РН600E.
Как его можно апгрейдить, чтобы он больше не сгорел?
Дополнение спустя 3 часа. Впаял дип симистр, полет нормальный, паяльник работает

Смотрите также

Комментарии 39

Схема наверно такая

вы разве не видите, что в схеме используется термопара для контроля и стабилизации температуры, а в данном паяльнике термоэлемент только с двумя выводами для нагревателя? Термоэлементы с температурным датчиком имеют 4-ре вывода!

Вижу без термопары паяльник так себе, что простой что такой

ну как сказать… температурные датчики разные бывают. Терморезисторы и термопары встраивают в нагревательный элемент. Термопара хуже чем терморезистор. Я свою паяльную станцию переводил с термопары на терморезисторы. Поскольку и качественней и дешевле

ну не знаю я своим с термопарой уже 3 года работаю пока нормально и не каждый терморезистор выдержит температуру внутри нагревателя а ставить его снаружи -нонсенс тем более диапазон термосопротивления не соизмерим с выделением напруги на термопаре

если работает, то все нормально. Тут думать не о чем! А вот если сломался, как в моем случае? Оказалось в моем случае или брать родной нихром с термопарой (в сборе) за 700р либо керамику с термосопротивлением (в сборе) от паяльной станции hakko за 130р. Термосопротивление уже расчитано под нужную температуру и встроено в нагревательный элемент. Меняет сопротивление от 50ом до 130ом(200 градусов). В обоих случаях поступает на ОУ в паяльной станции. Разница работы со всем этим добром определяется только обвесом из сопротивлений.

чет дорого за 700 рябчиков сын с китая дешевле товарисчу покупал

да. как оказалось, вы были правы, а я не прав

НИЧЕГО земляк бывает

я от такого паяльника избавился. Когда покупал, думал, что регулятор температуры это хорошо, температуру регулирует. Оказалось, что это хрень полная. Термостабилизации нет. Перегревает. Провода еще лудить и спаивать пойдет а так… Еще и ремонтировать его… Ну его нафиг. Лучше его проапгрейдить и взять с термостабилизацией

Кстати, плата, похоже, и под DIP, и под SMD разведена.
DIP, вроде, больший ток допускает по габаритам.

посмотрел, 4А против 1А. С радиатором, конечно.

И дросселя по питанию на плате не вижу…
Который L1.

Съездил купил дип. Впаял, он совсем не греется. Видимо брак. Этим паяльником пользуюсь 2 года

Симистор не греется?
Или паяльник не греется?
Или никто не греется?

Сегодня я вам расскажу об очень полезной схеме, которая пригодится как в лаборатории, так и в хозяйстве. Устройство, о котором пойдет речь, называется симисторный регулятор мощности. Регулятор можно применить для плавной регулировки яркостью освещения, температуры паяльника, оборотами электродвигателя (переменного тока). Мой вариант применения регулятора интересней, я плавно регулирую температуру нагрева тэна мощностью 1кВт в самогонном аппарате. Да-да, я занимаюсь этим благородным делом.

Схема имеет минимум элементов и заводится сразу. Мощность нагрузки для симисторного регулятора определяется током симистора. Симистор BTA12-600 рассчитан на ток 12 Ампер и напряжение 600 Вольт. Симистор нужно выбирать с запасом по току, я выбрал двукратный запас. Например, симистор BTA12-600 с оптимальным охлаждением может в штатном режиме пропускать через себя ток 8 Ампер. Если нужен регулятор мощнее, используйте симистор BTA16-600 или BTA24-600.

Работа схемы описана в статье «Диммер своими руками».

Рабочая температура кристалла симистора от -40 до +125 градусов Цельсия. Необходимо сделать хорошее охлаждение. У меня нагрузка 1кВт, соответственно ток нагрузки около 5А, радиатор площадью 200см кв. греется от 85 до90 градусов Цельсия при длительной работе (до 6ч). Планирую увеличить рабочую площадь радиатора, чтобы повысить надежность устройства.

Симистор имеет управляющий вывод и два вывода, через которые проходит ток нагрузки. Эти два вывода можно менять местами ничего страшного не случиться.

Для безопасности (чтобы не щелкнуло током), симистор необходимо устанавливать на радиатор через диэлектрическую прокладку (полимерную или слюдяную) и диэлектрическую втулку.

Компоненты.

Резистор 4.7кОм мощностью 0,25Вт. Динистор с маркировкой DB3 , полярности не имеет, впаивать любой стороной. Конденсатор пленочный на 100нФ 400В полярности не имеет.

Светодиод любого цвета диаметром 3мм, обратное напряжение 5В, ток 25мА. Короче любой светодиод 3мм. Светодиод дает индикацию нагрузки, не пугайтесь, если при первом включении (естественно без нагрузки) он светиться не будет.

Первое включение необходимо производить кратковременно без нагрузки. Если все нормально, никакие элементы не греются, ничего не щелкнуло, тогда включаем без нагрузки на 15 секунд. Далее цепляем лампу напряжением 220В и мощностью 60-200Вт, крутим ручку переменного резистора и наслаждаемся работой.

Для защиты я установил в разрыв сетевого провода (220В) предохранитель на 12А.

Собранный нами регулятор мощности на симисторе BTA12-600 можно применить для регулировки температуры паяльника (регулируя мощность), тем самым получив паяльную станцию для вашей мастерской.

Печатная плата регулятора мощности на симисторе BTA12-600

Даташит на BTA12-600

Зачем нужна проверка

В процессе ремонта или сборки новой схемы невозможно обойтись без электрических деталей. Одной из таких деталей является симистор. Его применяют в схемах устройств сигнализации, световых регуляторах, радиоприборах и многих отраслях техники. Иногда его применяют повторно после демонтажа неработающих схем, и нередко приходится встречать элемент с утраченной от длительного использования или хранения маркировкой. Случается, что и новые детали надо проверить.

Как же быть уверенным, что симистор, установленная в схему, действительно исправен, и в будущем не нужно будет затрачивать много времени на отладку работы собранной системы?

Для этого необходимо знать, как проверить симистор мультиметром или тестером. Но сначала надо понять, что собой представляет данная деталь, и как она работает в электрических схемах.

По сути, симистор является разновидностью тиристора. Название составлено из этих двух слов – «симметричный» и «тиристор».

Тиристор КУ208

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны. Разработка техники ремонта и регулировки с практическим изготовлением «Автомата включения вентилятора». Выбор, обоснование и описание схемы. Описание конструкции проектируемого изделия. Возможные неисправности, их причины, методы обнаружения и устранения. Разработка схемы без включения элементной базы с нужными функциональными узлами. Цоколевка корпуса МК51 и наименования выводов.

Разновидности тиристоров

Тиристорами принято называть группу полупроводниковых приборов (триодов), способных пропускать или не пропускать электрический ток в заданном режиме и в определенные промежутки времени. Так создают условия работоспособности схемы в соответствии с ее функциями.

Управление работой тиристоров осуществляется двумя способами:

  • подачей напряжения определенной величины для открытия или закрытия прибора, как в динисторах (диодных тиристорах) – двухэлектродных приборах;
  • подачей импульса тока определенной длительности или величины на управляющий электрод, как в тринисторах и симисторах (триодных тиристорах) – трехэлектродных приборах.

По принципу работы эти приборы различаются на три вида.

Тринисторы открываются при подаче тока на контакт управляющего электрода и остаются открытыми при положительной разности потенциалов между катодом и анодом. То есть они открыты, пока в цепи существует напряжение. Это обеспечивается наличием тока, сила которого не ниже одного из параметров тринистора – тока удержания. В открытом состоянии также работают по принципу диода.

Симисторы – разновидность тринисторов, которые пропускают ток по двум направлениям, находясь в открытом состоянии. По сути, они представляют пятислойный тиристор.

Тиристор КУ208Г

Ежедневная отправка заказов производится из г. Каменск-Шахтинский, Ростовской области по фиксированному тарифу (количество товаров не влияет на стоимость доставки). При общей сумме заказа более 2000 рублей — доставка почтой России за счет магазина!

Гибкая система оплаты банковскими картами (Visa, Mastercard, Maestro, МИР) любого банка, через интернет-банкинг (Промсвязьбанк, Альфа-Банк, ВТБ24, Банк Русский Стандарт), электронными деньгами (Webmoney, Яндекс деньги, Qiwi), наличными в салонах связи (Евросеть, Связной) — позволит вам оплатить заказ + стоимость доставки он-лайн без всяких комиссий.

После получения он-лайн оплаты, мы предоставим Вам электронный чек ОФД – который приравнен к обычному бумажному чеку и может быть использован Вами для любых целей – для отчета в бухгалтерии или разрешения спорных ситуаций, а после комплектации и отправки заказа (как правило 1-2 суток) – предоставим ссылку для отслеживания местонахождения заказа на электронную почту и продублируем смс сообщением. Вы в любой момент можете узнать – где именно находится заказ!

Доставка осуществляется почтой России до Вашего почтового отделения или Транспортной Компанией до точки самовывоза (ПВЗ Транспортой Компании) либо курьером до Двери в кротчайшие сроки — от 3 до 8 суток (в зависимости от региона получателя и способа доставки).

Доставка в Казахстан и Белоруссию осуществляется только транспортной компанией! При этом он-лайн оплата может производится банковскими картами в национальной валюте с прямой конвертацией в Российские рубли без всяких комиссий.

В настоящее время жесткой конкуренции на стоимость — скорость доставки заказов — Обратите внимание на способ доставки Транспортной Компанией. т.к. Стоимость ее доставки уже сравнялась с Почтой России, зато скорость выполнения работы, специальные логистические центры и отсутствие очередей, а так же лояльное отношение к клиенту — несоизмеримо выше!

Даже если по какой-то причине Вам не удалось оплатить заказ, мы отправим на Ваш электронный ящик письмо с уведомлением о заказе и ссылкой его для оплаты.

Все неоплаченные в течении 5 банковских дней заказы анулируются.

*Изображение для продукта Тиристор КУ208Г служит только для ознакомления и не предназначено для использования в конструкторской документации.

**Цены и наличие товара на сайте и в розничных магазинах «Radio-Sale» могут отличаться.

С помощью тестера

Проверка работоспособности симистора мультиметром или тестером основана на знании принципа работы этого устройства. Конечно же, она не даст полной картины состояния детали, так как невозможно определить рабочие характеристики симистора без сборки электрической схемы и проведения дополнительных измерений. Но часто вполне достаточно будет подтвердить или опровергнуть работоспособность полупроводникового перехода и управления им.

Чтобы проверить деталь, необходимо использовать мультиметр в режиме измерения сопротивления, то есть как омметр. Контакты мультиметра присоединяются к рабочим контактам симистора, при этом значение сопротивления должно стремиться к бесконечности, то есть быть очень большим.

После этого соединяется анод с управляющим электродом. Симистор должен открыться и сопротивление должно упасть почти до нуля. Если все так и произошло, скорее всего, симистор работоспособен.

При разрыве контакта с управляющим электродом симистор должен остаться открытым, но параметров мультиметра может быть недостаточно, что бы обеспечить так называемый ток удержания, при котором прибор остается проводимым.

Устройство можно считать неисправным в двух случаях. Если до появления напряжения на контакте управляющего электрода сопротивление симистора ничтожно мало. И второй случай, если при появлении напряжения на контакте управляющего электрода сопротивление прибора не уменьшается.

Система обозначений симисторов, тиристоров, динисторов BT выпускаемых компанией Philips

1. ВТ — симистор Philips

3. не обозначается для серии 134, тип корпуса симисторов BT134 — SOT-82

4. Макс. напряжение, В

5. Ток отпирания управляющего электрода: не обозначается – 35 мА, B – 50 мА, D – 5 мА, E – 10 мА, F – 25 мА

BT134 выпускается в пластмассовом корпусе типа SOT-82. Симисторы BT134 серии применяются в схемах управления электродвигателями, в промышленных и бытовых осветительных приборах, студийных вспышках, операторский свет для видеосъемки, в электронагревательных приборах и другой бытовой технике.

Для схемы «Усилитель мощности 200 ВТ на базе TDA 7294»

AUDIO техникаУсилитель мощности
200 ВТ на базе TDA 7294ИМС TDA7294 разработана и изготовляется группой компаний SGS-THOMSON Microelectronics. Это одна из наиболееудачных микросхем УМЗЧ, обладающая не только большой отдаваемой мощностью (100 Вт) и высокой надежностью, но и обеспечивающая наиболее качественное (среди ИМС) звучание. При создании мощных УМЗЧ на биполярных транзисторах (и ИМС) возникает опасность вторичного пробоя, приводящего к выходу их из строя. Существующие системы защиты (SOA) при работе на реактивную нагрузку (реальную АС) теряют свою эффективность.Для обхода этих проблем на выходе TDA7294 применены мощные полевые транзисторы, у которых вторичный пробойотсутствует, а усиление напряжения выполняют как биполярные, так и полевые транзисторы.Совмещенная биполярно-полевая технология с высоковольтными мощными МОП-транзисторами получила фирменноеназвание BCD 100. ксв метр схемы своими руками В типовой схеме включения ИМС развивает 70 Вт синусоидальной
мощности
на нагрузке 8 6 4 Ом при напряжениях питания соответственно ± 35 31 27 В. Музыкальная мощность (по стандарту МЭК268.3) при этом составляет 100 Вт (при напряжении питание 35 В).В данном усилителе применены две ИМС TDA7294, что позволило развить музыкальную мощность 200 Вт.Технические характеристики:Выходная мощность — 200 Вт ( на 8 ом)Коэфф. нелин. искажений при макс. мощности — -не более 0,1 %Коэфф. нелин. искажений при
мощности
5 Вт- -не более 0,005 %Диапазон рабочих частот — -10-35000 гцУровень шума при замкнутом входе — — 95 дБСхема усилителя (23 Кб)…
Смотреть описание схемы …

Для схемы «Простой регулятор мощности»

Индуктивная нагрузка в цепи регулятора мощности предъявляет жесткие требования к схемам менеджмента симисторов- синхронизация системы менеджмента должна осуществляться непосредственно от питающей сети сигнал должен иметь длительность равную интервалу проводимости симистора. На рисунке приведена схема регулятора удовлетворяющего этим требованиям в котором используется сочетание динистора и симистора Постоянная времени (R4 + R5)C3 определяет угол запаздывания отпирания динистора VS1 а значит и симистора VS2 Перемещением ползунка переменного резистора R5 регулируют мощность потребляемую нагрузкой. Конденсатор С2 и резистор R2 используются для синхронизации и обеспечения длительности сигнала менеджмента Конденсатор СЗ перезаряжается от С2 после переключения так как в конце каждого полупериода на нем оказывается напряжение обратной полярности. Для защиты от помех создаваемых регулятором введены два Фильтра R1C1 — в цепь питания и R7C4 — в цепь нагрузки. Для налаживания устройства нужно резистор R5 поставить в положение максимального сопротивления и резистором R3 установить минимальную мощность на нагрузке Конденсаторы С1 и С4 типа К40П-2Б на 400 В конденсаторы С2 и СЗ типа К73-17 на 250 В Диодный мост VD1 можно сменить диодами КД105Б Выключатель SA1 рассчитан на ток не менее 5 A. В.Ф.Яковлев, г.Шостка, Сумская обл. …
Смотреть описание схемы …

Для схемы «РЕГУЛЯТОР МОЩНОСТИ С ОБРАТНОЙ СВЯЗЬЮ»

Бытовая электроникаРЕГУЛЯТОР МОЩНОСТИ С ОБРАТНОЙ СВЯЗЬЮИ.СЕМЕНОВ, 141980, Московская обл., г.Дубна, ул.Мира, 9/6 — 4, тел.(221)4-54-00.Часто нужно понизить частоту вращения электродрели или иного электроинструмента с коллекторным двигателем переменного тока. В большинстве случаев регуляторы мощности хорошо управляют активной нагрузкой, тогда как регулирование реактивной нагрузки имеет свои особенности. Обычно используют или число-импульсный, или фазо-импульсный принцип регулирования.Достаточно полно эти вопросы отражены в публикациях разных лет, например в [1…3].Предлагаемая схема обеспечивает регулирование с обратной связью по току коллекторного двигателя переменного тока, благодаря чему при увеличении нагрузки соответственно увеличивается крутящий момент на валу. Схема была реализована для привода швейной машины в производственных условиях. Для регулирования оборотов швейных машин применяют угольные (таблеточные) реостаты, которые весьма недолговечны. Электрическая схема трансивера Эфир-М Регулятор, приведенный на рисунке, состоит из силового ключа на тринисторе VS1, выпрямительных вентилей VD1, VD2 и переменного резистора R2 в цепи менеджмента. На выходе предусмотрен выпрямительный мост. Все элементы регулятора смонтированы на плате навесным монтажом и закрыты ударопрочным корпусом. Перегрева тринистора не наблюдалось, поэтому он установлен на монтажной стойке без теплоотвода.Некоторую трудность представляет механический узел, передающий усилие от педали на ось потенциометра, но это преодолимо, если применить зубчатый сектор и шестерню.Характерная черта работы регулятора — его обратная связь по нагрузке. При увеличении нагрузки увеличивается крутящий момент на валу двигателя. Благодаря этому машина легко проходит утолщения в виде швов, работает более плавно. Искрения на коллекторе не наблюдалось.При использован…
Смотреть описание схемы …

Выбери триак

По этой причине схема тиристора, а особенно симисторного регулятора мощности получается более простой, экономичной и надежной. Особенно если он быстро включается. У регулятора мощности на симисторе кроме него нет больше полупроводниковых приборов, по которым течет ток нагрузки. А у регуляторов с остальными ключами такими приборами обязательно будут выпрямительные диоды, в том числе встроенные. Поэтому рекомендуем остановиться на симисторах — схемы с ними есть во многих справочниках, популярных журналах а, следовательно, и в интернете. Их легко найти и выбрать что-либо приемлемое.

Первый регулятор мощности на симисторе КУ208Г используется уже много лет, начиная с 80-х годов прошлого века.

Параметры симистора КУ208Г

Схема простейшего регулятора мощности

Понравилась статья? Поделить с друзьями:
  • Как позвонить airbnb россия горячая линия
  • Как позвонить 88002008002
  • Как позвонить 3х фазный двигатель мультиметром
  • Как позвонить 220 вольт
  • Как позвонить 1хбет звонить